首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在使用SHAP时,如何解释多类分类问题的base_value?

在使用SHAP(SHapley Additive exPlanations)时,多类分类问题的base_value是指模型对于所有类别的预测输出的基准值。它表示在没有任何特征影响的情况下,模型对每个类别的预测结果是多少。

对于多类分类问题,base_value是一个向量,其中每个元素表示对应类别的基准预测值。通常情况下,base_value是通过对训练数据中各类别样本的平均预测值进行计算得到的。

解释多类分类问题的base_value可以帮助我们理解模型对每个类别的整体预测倾向。如果某个类别的base_value较高,说明模型在没有考虑任何特征的情况下更倾向于预测该类别。相反,如果某个类别的base_value较低,说明模型在没有考虑任何特征的情况下更倾向于排除该类别。

在解释多类分类问题时,可以通过计算每个特征对于每个类别的SHAP值来了解它们对于每个类别的影响程度。SHAP值表示每个特征对于模型预测结果的贡献度,正值表示增加预测结果的可能性,负值表示减少预测结果的可能性。

对于解释多类分类问题的base_value,腾讯云没有特定的产品或链接地址与之相关。然而,腾讯云提供了一系列云计算服务和解决方案,可以帮助开发者构建和部署各种应用,包括但不限于云原生、人工智能、物联网等领域。您可以访问腾讯云官方网站(https://cloud.tencent.com/)了解更多相关信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 针对恶意软件分类器的可解释性后门投毒

    终端安全行业越来越多地采用基于机器学习 (ML) 的工具作为其纵深防御策略的组成部分。特别是,使用源自二进制文件静态分析的特征的分类器通常用于在端点上执行快速、预执行检测和预防,并且通常充当终端用户的第一道防线。同时,了针对恶意软件(malware)检测模型的对抗性攻击的关注度相应增加。该领域的主要焦点是逃避攻击(evasion attack)的发展,其中攻击者的目标是在推理时改变数据点以引起错误分类。然而在本文中关注投毒攻击的潜在问题,它试图影响 ML 训练过程,特别是后门投毒攻击,其中攻击者将精心选择的模式放入特征空间,以便受害者模型学习将其存在与攻击者选择的类别相关联。虽然之前已经针对开源和商业恶意软件分类器的测试证明了规避攻击,但后门投毒为攻击者提供了一种有吸引力的替代方案,它在一开始就需要更多的计算工作,这可能会导致通用规避各种恶意软件样本和目标分类器的能力。当应用于计算机视觉模型而不需要大量投毒样本时,这些后门攻击已被证明是非常有效的,但它们对恶意软件分类域和一般基于特征的模型的适用性尚未被调查。

    04

    【2023新书】可解释的AI谱系,使用Python实现模型可解释性和可解释性的解决方案

    来源:专知本文为书籍介绍,建议阅读5分钟本书采用问题解决的方法来解释机器学习模型及其算法。 理解如何使用可解释人工智能(XAI)库,并建立对人工智能和机器学习模型的信任。本书采用问题解决的方法来解释机器学习模型及其算法。 本书从监督学习线性模型的模型解释开始,包括分类和回归模型的特征重要性、部分依赖分析和影响数据点分析。接下来,介绍了使用非线性模型和最先进的框架(如SHAP值/分数和LIME)进行监督学习的方法。使用LIME和SHAP覆盖时间序列模型的可解释性,以及与自然语言处理相关的任务,如文本分类,E

    02

    Nature子刊:用于阿尔茨海默病痴呆评估的多模态深度学习模型

    在全球范围内,每年有近1000万新发痴呆病例,其中阿尔茨海默病(AD)最为常见。需要新的措施来改善对各种病因导致认知障碍的个体的诊断。作者报告了一个深度学习框架,该框架以连续方式完成多个诊断步骤,以识别具有正常认知(NC)、轻度认知障碍(MCI)、AD和非AD痴呆(nADD)的人。作者展示了一系列能够接受常规收集的临床信息的灵活组合的模型,包括人口统计、病史、神经心理学测试、神经影像学和功能评估。然后,作者表明这些框架与执业神经科医生和神经放射科医生的诊断准确性相比具有优势。最后,作者在计算机视觉中应用可解释性方法,以表明模型检测到的疾病特异性模式可以跟踪整个大脑的退行性变化的不同模式,并与尸检时神经病理学病变的存在密切相关。作者的工作证明了使用既定的医学诊断标准验证计算预测的方法。

    03
    领券