在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...对象,并设置应用程序的名称。...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...avg()、max()、min() 和 sum() 是 PySpark 提供的聚合函数。alias() 方法用于给聚合结果列指定别名。显示聚合结果:使用 result.show() 方法显示聚合结果。
groupby返回的是一个GroupBy对象,该对象本身并不包含任何聚合结果,而是提供了一个接口来应用各种聚合函数。 agg 方法 agg(aggregate的缩写)用于对分组后的数据进行聚合计算。...它可以接受多种类型的参数,如字符串表示的函数名、自定义函数、字典等。通过agg,我们可以一次性对多个列应用不同的聚合函数,极大地提高了数据处理的灵活性和效率。...单列聚合 基本用法 对于单列数据的聚合,通常我们会先使用groupby方法指定分组依据,然后调用agg方法并传入具体的聚合函数。...这在实际应用中非常有用,例如统计各部门员工的平均工资和最大工作经验。同样使用groupby和agg方法,只需传入一个包含多个列名的列表即可。 常见问题 优先级设定:明确各列之间的优先关系非常重要。...("\n对同一列应用多个聚合函数:") print(multi_func_agg_result) 总结 通过对Pandas groupby和agg的学习,我们可以更好地理解和运用这一强大工具来满足各种数据分析需求
pandas整个系列覆盖以下内容: 图解Pandas核心操作函数大全 图解Pandas数据变换高级函数 Pandas数据分组与操作 一、Pandas数据分组与操作 在我们进行业务数据分析时,经常要对数据根据...groupby之后可以进行下一步操作,注意,在groupby之后的一系列操作(如agg、apply等),均是基于子DataFrame的操作。 下面我们一起看看groupby之后的常见操作。...2.2 agg 聚合操作 聚合统计操作是groupby后最常见的操作,类比于SQL中我们会对数据按照group做聚合,pandas中通过agg来完成。...相比于agg和transform,apply方法拥有更大的灵活性,但它的运行效率会比agg和transform慢。...所以,groupby之后怼数据做操作,优先使用agg和transform,其次再考虑使用apply进行操作。
---- 03 转换(apply)——agg/apply/transform 分组之后的第二个步骤即为分组转换操作,也就是应用(apply)一定的函数得到相应的结果。...apply,除了agg丰富的可选聚合函数外,apply还可以自定义面向分组的聚合函数 这里apply函数实际上是一个应用非常广泛的转换函数,例如面向series对象,apply函数的处理粒度是series...transform,又一个强大的groupby利器,其与agg和apply的区别相当于SQL中窗口函数和分组聚合的区别:transform并不对数据进行聚合输出,而只是对每一行记录提供了相应聚合结果;而后两者则是聚合后的分组输出...当然,这是直接用了聚合函数,更复杂的例如agg、apply和transform等用法也是一样的。...另外,还可将groupby与resample链式使用,但仅可以是resample在groupby之后,反之则会报错。例如: ?
groupby 是pandas 中非常重要的一个函数, 主要用于数据聚合和分类计算. 其思想是“split-apply-combine”(拆分 - 应用 - 合并)....拆分:groupby,按照某个属性column分组,得到的是一个分组之后的对象 应用:对上面的对象使用某个函数,可以是自带的也可以是自己写的函数,通过apply(function) 合并:最终结果是个S...之后是一个对象,,直到应用一个函数(mean函数)之后才会变成一个Series或者Dataframe. type(df.groupby("occupation")) # output pandas.core.groupby.groupby.DataFrameGroupBy...之后的对象应用自定义的函数 demo = df[:5] demo.groupby("gender").apply(lambda x: print(x)) # result user_id...','count','max']) # 能够传入多个聚合函数 grouped["age"].agg(np.max) 避免层次化索引 分组和聚合之后使用reset_index() 在分组时,使用as_index
聚合运算 (1)groupby:按照变量进行分组 (2)按照函数进行分组 (3)用agg()自定义聚合函数 2....(3)用agg()自定义聚合函数 前面的聚合函数:mean()/ sum()/ count()等等,都是内置的,其实也可以自定义,自定义函数之后,要结合agg使用。...如果自定义的聚合函数为fun(),那么groupby中要以agg(fun)的形式使用。...agg()不仅可以发挥自定义聚合函数的作用,还可以一次性对多个函数进行聚合运算: family.groupby('fam')['salary'].agg(['mean','sum', max2]) 结果为...还可以对不同的列应用不同的聚合函数,使用字典可以完成 {列1:函数1, 列2:函数2},然后再用agg()包起来: family.groupby('fam')['salary'].agg({'salary
,'nanjing':['sum','mean']}) 2.2逐列及多函数应用 【例10】同时使用groupby函数和agg函数进行数据聚合操作。...关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进 行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...,'mean']} df.groupby('Country').agg(df_age) 在我们对数据进行聚合的过程中,除了使用sum()、max ()等系统自带的聚合函数之外,大家也可以使用自己定义的函数...(df['key1']) print(list(grouped)) 【例11】同时使用groupby函数和agg函数进行数据聚合操作。...使用read_csv导入数据之后,我们添加了一个小费百分比的列tip_pct: 如果希望对不同的列使用不同的聚合函数,或一次应用多个函数,将通过下面的例来进行展示。
自定义聚合函数 在高级分组与聚合中,我们可以定义自己的聚合函数。...高级分组与聚合 5.1 使用 agg 方法 agg 方法可以同时应用多个聚合函数,并对多列进行不同的聚合: # 高级分组与聚合 result = df.groupby('Category').agg({...'Value1': 'sum', 'Value2': custom_aggregation}) 5.2 使用多个聚合函数 # 使用多个聚合函数 result = df.groupby('Category...自定义聚合函数的应用 7.1 使用 apply 方法 apply 方法可以更灵活地应用自定义聚合函数: # 使用 apply 方法 result_apply = df.groupby('Category...处理缺失值 在进行高级分组与聚合时,可以使用 dropna 方法处理缺失值: # 处理缺失值 result_dropna = df.groupby('Category').agg({'Value1':
导读 Pandas是当前Python数据分析中最为重要的工具,其提供了功能强大且灵活多样的API,可以满足使用者在数据分析和处理中的多种选择和实现方式。...对于上述仅有一种聚合函数的例子,在pandas中更倾向于使用groupby直接+聚合函数,例如上述的分组计数需求,其实就是groupby+count实现。...03 groupby+agg 上述方法是直接使用groupby+相应的聚合函数,这种聚合统计方法简单易懂,但缺点就是仅能实现单一的聚合需求,对于有多种聚合函数的情况是不适用的。...agg的函数文档如下: ? 这里,仍然以上述分组计数为例,讲解groupby+agg的三种典型应用方式: agg内接收聚合函数或聚合函数列表。...,仅适用于单一聚合函数的需求;第三种groupby+agg,具有灵活多样的传参方式,是功能最为强大的聚合统计方案;而第四种groupby+apply则属于是灵活应用了apply的重载功能,可以用于完成一些特定的统计需求
sales.groupby("store")[["stock_qty","price"]].mean() 3、多列多个聚合 我们还可以使用agg函数来计算多个聚合值。...5、多个聚合和多个函数 sales.groupby("store")[["stock_qty","price"]].agg(["mean", "max"]) 6、对不同列的聚合进行命名 sales.groupby...、Lambda表达式 可以在agg函数中使用lambda表达式作为自定义聚合操作。...x: round(x.sum() / 1000, 1) ) ) 17、apply函数 使用apply函数将Lambda表达式应用到每个组。...我们可以使用rank和groupby函数分别对每个组中的行进行排序。
如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。 在本文中,我们将使用25个示例来详细介绍groupby函数的用法。...sales.groupby("store")[["stock_qty","price"]].mean() output 3、多列多个聚合 我们还可以使用agg函数来计算多个聚合值。...5、多个聚合和多个函数 sales.groupby("store")[["stock_qty","price"]].agg(["mean", "max"]) output 6、对不同列的聚合进行命名...output 16、Lambda表达式 可以在agg函数中使用lambda表达式作为自定义聚合操作。...我们可以使用rank和groupby函数分别对每个组中的行进行排序。
df[['Q1','Q2']].groupby(df['team']).mean() (二)应用阶段:对数据进行必要的处理和变换 分组后,可以对组对象应用多种聚合函数,实现对每组数据的统计计算。...filter、transform和apply函数的使用 (一)agg函数的用法 agg(等价于aggregation)函数的用法:对各组应用特定的聚合函数 以下三种写法等价: df.groupby('team...# 使用字符串 # df.groupby('team').mean() # 不使用agg函数,直接调用聚合函数 相比于直接调用聚合函数,agg函数更强大之处在于: (1)允许同时做多种计算...应用于分组:GroupBy.apply的使用 apply函数的功能更为强大,它也要求参数是函数。...,在调用函数的同时还可以给它传递参数(agg也可以通过args给函数传参数) 示例:求每一组特定列的前几名 排序操作不是聚合,聚合是返回1个标量,排序会返回多个值,因此只能用apply而不能用agg。
agg():自定义聚合函数,可以使用numpy函数或自己定义的函数进行聚合。 这些聚合函数可以应用于单个列或多个列,也可以同时应用于多个列。...,'nanjing':['sum','mean']}) 逐列及多函数应用 示例一 【例10】同时使用groupby函数和agg函数进行数据聚合操作。...关键技术: groupby函数和agg函数的联用。 在我们用pandas对数据进行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...,'mean']} df.groupby('Country').agg(df_age) 在我们对数据进行聚合的过程中,除了使用sum()、max ()等系统自带的聚合函数之外,大家也可以使用自己定义的函数...使用read_csv导入数据之后,我们添加了一个小费百分比的列tip_pct: 如果希望对不同的列使用不同的聚合函数,或一次应用多个函数,将通过下面的例来进行展示。
']).sum() 和上面的效果是一样一样的 甚至,我们可以直接简写成 df.groupby(['second', 'A']).sum() 分组之后的数据可以选择部分,也可以迭代 这个部分,其实我们已经实现过了...df.groupby(['A', 'B']).get_group(('bar', 'one')) 唉,对喽,这么写,就比较对了 难度系数的大了,要来了,聚合函数 首先看一下内置的聚合函数 sum(),...思路转换,单列求平均值 grouped = df.groupby(['A','B']) print(grouped['C'].agg('mean')) 继续思路转换,给单列多个聚合函数 print(grouped...不同的列运用不同的聚合函数 print(grouped.agg({'C':['sum','mean'],'D':['min','max']})) ?...最后一个操作,agg里面是可以使用自定义的聚合函数 一般,都是这个案例,我呢,当然不能例外啦 grouped = df.groupby('A') def max_min(group): return
无法使用自定义的聚合函数 无法直接对结果的列名在聚合前进行自定义命名 可以通过agg函数解决这些问题: 当使用多个聚合函数时,需要用列表的形式把内置聚合函数对应的字符串传入,先前提到的所有字符串都是合法的...gb.agg(['sum', 'idxmax', 'skew']) # 对height和weight分别用三种方法聚合,所以共返回六列数据 对特定的列使用特定的聚合函数 可以通过构造字典传入agg中实现...,其中字典以列名为键,以聚合字符串或字符串列表为值 gb.agg({'Height':['mean','max'], 'Weight':'count'}) 使用自定义函数 在agg中可以使用具体的自定义函数...分组之后, 如果走聚合, 每一组会对应一条记录, 当分组之后, 后续的处理不要影响数据的条目数, 把聚合值和每一条记录进行计算, 这时就可以使用分组转换(类似SQL的窗口函数) def my_zscore...']],因此所有表方法和属性都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。
如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。 在本文中,我们将使用25个示例来详细介绍groupby函数的用法。...sales.groupby("store")[["stock_qty","price"]].mean() 3、多列多个聚合 我们还可以使用agg函数来计算多个聚合值。...5、多个聚合和多个函数 sales.groupby("store")[["stock_qty","price"]].agg(["mean", "max"]) 6、对不同列的聚合进行命名 sales.groupby...16、Lambda表达式 可以在agg函数中使用lambda表达式作为自定义聚合操作。...我们可以使用rank和groupby函数分别对每个组中的行进行排序。
下面通过一个例子说明分组聚合的过程: 掌握分组与聚合的过程,可以熟练地groupby()、agg()、transfrom()和apply()方法实现分组与聚合操作 2.3.1 分组操作groupby...(value) 输出为: 2.3.2.1 agg()方法 agg()方法既接收内置统计方法,又接收自定义函数,甚至可以同时运用多个方法或函数,或给各列分配不同的方法或函数,能够对分组应用灵活的聚合操作...定义求极差的函数 def my_range(arr): return arr.max()-arr.min() groupby_obj.agg(my_range) # 使用agg()方法聚合分组数据...在使用agg方法中,还经常使用重置索引+重命名的方式: # 初始化分组DF import pandas as pd df_obj = pd.DataFrame({'a': [0, 1, 2, 3, 4...(by='f').agg({'a':'count'}) 输出为: 会发现,经过agg聚合后,分组键做了索引,聚合之后的a列的列名为a,这个列名会与原有的列名冲突,换成a_count比较合适,方法如下
三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...当变量为1个时传入名称字符串即可,当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组...3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合,其传入的参数为字典...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
虽然apply的灵活性使其成为一个简单的选择,但本文介绍了其他Pandas函数作为潜在的替代方案。 在这篇文章中,我们将通过一些示例讨论apply、agg、map和transform的预期用途。...applymap就像map一样,但是是在DataFrame上以elementwise的方式工作,但由于它是由apply内部实现的,所以它不能接受字典或Series作为输入——只允许使用函数。...Transform必须返回一个与它所应用的轴长度相同的数据框架。 也就是说即使transform与返回聚合值的groupby操作一起使用,它会将这些聚合值赋给每个元素。...df.groupby("subject")["score"].agg( ["min", "mean", "max"] ).round(2) Agg提供了更多执行聚合的选项。...我们还可以构建自定义聚合器,并对每一列执行多个特定的聚合,例如计算一列的平均值和另一列的中值。 性能对比 就性能而言,agg比apply稍微快一些,至少对于简单的聚合是这样。
一开始以为只是一个简单的去重问题而已,【编程数学钟老师】大佬提出使用set函数,后来有粉丝发现其实没有想的这么简单。目前粉丝就需要编号,然后把重复的编号删除,但是需要保留前边的审批意见。...这么来看,使用set集合的办不到了。 二、实现过程 这里给出两个解决方法,一起来看看吧。...方法一 这个方法来自【(这是月亮的背面)】大佬提供的方法,使用pandas中的groupby函数巧妙解决,非常奈斯!...这篇文章基于粉丝提问,在实际工作中运用Python工具实现了数据批量分组的问题,在实现过程中,巧妙的运用了pandas.groupby()函数,顺利的帮助粉丝解决了问题,加深了对该函数的认识。...最后感谢粉丝【假装新手】提问,感谢【(这是月亮的背面)】大佬和【Oui】大佬给予的思路和代码支持。 文中针对该问题,给出了两个方法,小编相信肯定还有其他的方法,欢迎大家积极尝试。
领取专属 10元无门槛券
手把手带您无忧上云