首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

原-图像处理基础(二)图像的放大与缩小

,放大倍数 function dst=imageNearestNeighbor(src,scale) Row=size(src,1); Col=size(src,2);%图像行数和列数 max_row...(ima); %获取原图像的宽高 sh=swh(:,1); %获取原图像的高 sw=swh(:,2); %获取原图像的宽 %"加墙" ima2=zeros(sh+2,sw+2); ima2(1,2:...dw=sw*n; %计算缩放后的图像的宽 dh=sh*n; %计算缩放后的图像的高 dw1=round((sw+2)*n); %计算加墙后缩放的图像的宽 dh1=round((sh+2)*n)...; %计算加墙后缩放的图像的高 resIma1=zeros(dh1,dw1); %创建原图像的矩阵 %从不是“墙”的位置开始计算缩放后的图像的各点灰度值 %考虑缩小图像时,输入的缩放倍数是小数,...1); endI=round(dh+n); endJ=round(dw+n); for i=start:endI for j=start:endJ tx=i/n; %缩放后的图像坐标在原图像处的位置

2.9K70

图像处理的应用 - 动作放大

动作放大 (Video Magnification) 在现实世界中,每时每刻都有一些难以察觉的微小变化,这些运动是如此的轻微,如果不注意观察,很难发现。...红色线表示信号在x点的梯度 ?...之前有读者问我图像的傅里叶变换有哪些应用,我想今天这一个算法就是一个生动的例子。 我在下一篇文章还会用python代码来给大家展示欧式视频动作放大的完整实现过程,敬请期待。...今天所讲的频域处理实现只是欧式视频动作放大的一种方法,它有一些明显的局限性。在我的计划中,还会再撰写一篇文章来阐述这些局限性,并引入另外一种欧式视频动作放大的算法来克服这些局限性,得到更好的结果。...当这一个系列的文章介绍完后,我们会开启计算摄影之旅的新的篇章,进入到图像的合成这个领域。

1.1K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像腐蚀与图像膨胀在信号过滤的应用

    今天遇到一个有趣的问题,常规我做图片处理,采用图像腐蚀与图像膨胀等方法用来得到想要的图像特征,今天第一次看到腐蚀与膨胀在信号过滤中的引用,故此分享探讨 先说说图像腐蚀与图像膨胀 图像腐蚀与图像膨胀 一...基础知识   图像的膨胀(dilation)和腐蚀(erosion)是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域.   ...二 图像膨胀 膨胀的运算符是“⊕”,其定义如下:   该公式表示用B来对图像A进行膨胀处理,其中B是一个卷积模板或卷积核,其形状可以为正方形或圆形,通过模板B与图像A进行卷积计算,扫描图像中的每一个像素点...图像中的高亮区(黑点增多) 三 图像腐蚀   腐蚀的运算符是“-”,其定义如下: 该公式表示图像A用卷积模板B来进行腐蚀处理,通过模板B与图像A进行卷积计算,得出B覆盖区域的像素点最小值,并用这个最小值来替代参考点的像素值...如图所示,将左边的原始图像A腐蚀处理为右边的效果图A-B。

    59820

    图像处理的应用 - 欧式视频放大的实现

    一 欧式视频动作放大的基本流程 原作者在文章中用下面这张图形象的描述了算法的实现流程,我已经在上一讲中做了基本的描述: ?...第二是是按照论文的建议,需要将图像加载后转换到合适的颜色空间,在CMU原始课程作业要求中,需要将图像数据转换到YIQ颜色空间,数据类型会变为浮点型,存储空间消耗会进一步增加。...构建视频金字塔 构建视频金字塔的第一步是构建图像的金字塔,这一点我已经在第5讲,图像采样与金字塔中讲过,这里给大家回忆一下: ? 图像金字塔构建算法 ?...很多时候我们想形象的展示金字塔构建的成果,在OpenCV所带例程中有一段代码做得特别好,这里我稍加整理作为了一个函数提出,并分解和显示了视频中的第7帧,请注意直流帧(就是最小的那幅图像)的颜色显得非常奇怪...下面展示了放大前后放大后的视频信号,它具有明显的规律性,但又不像之前滤波后的图像那么干净的正弦(余弦)信号。 ? 2.3.4 重建视频 ?

    1.6K31

    一键放大 10+免费好用的AI图像高清放大工具

    幸运的是,如今有免费的AI图像高清放大工具可以帮助我们解决这些问题,让我们能够享受更清晰、更精彩的图像。 以下是10款免费好用的AI图像高清放大工具,让我们一起来了解一下,文末领取合集 1....Waifu2x Waifu2x能够提供图片的放大和降噪功能,通过使用深度学习技术可以提高图像的质量,同时保留细节和纹理。它简单易用且效果非常好。 2....Kraken.io Kraken.io主要用于图像压缩,但也提供了一个免费的图像放大功能。不仅能够放大图像,还能保证图像的细节清晰度。 5....在线AI放大 在线放大是一个专注于图像增强的平台,能够放大图像并提升细节清晰度。同时,它还支持批量处理,节省了时间和精力。 6....9.高清图 10.ImageLager 11.upsacle 12 SD自带放大 通过这些免费的AI图像高清放大工具,我们能够轻松将模糊、低分辨率的图像转化为高清的作品,细节和纹理都能得到显著提升。

    1.1K20

    在玩图像分类和图像分割?来挑战基于 TensorFlow 的图像注解生成!

    举个例子,下图便是在 MS COCO 数据集上训练的神经图像注解生成器,所输出的潜在注解。 ?...下载链接也在 GitHub 资源库里。 现在教程开始。 图像注解生成模型 ? 在高层级,这就是我们将要训练的模型。每一幅图像将会用深度 CNN 编码成 4,096 维的矢量表示。...在我们的例子中,VGG-16 图像分类模型导入 224x224 分辨率的图像,生成对分类图像非常有用的 4,096 维特征矢量。...该算法会对长度 t 以内的 k 个最佳语句集反复考量,作为候选来生成 t + 1 大小的句子,只保留结果中的 k 个最佳选择。这允许开发者探索一个较大的优质注解空间,同时让推理在计算上可追踪。...在下面的例子里,算法保持了一个 k = 2 的候选句子列表,即每个垂直时间步到每个加粗词语的路线。 ?

    98140

    开发 | 在玩图像分类和图像分割?来挑战基于 TensorFlow 的图像注解生成!

    举个例子,下图便是在 MS COCO 数据集上训练的神经图像注解生成器,所输出的潜在注解。 ?...下载链接也在 GitHub 资源库里。 现在教程开始。 图像注解生成模型 ? 在高层级,这就是我们将要训练的模型。每一幅图像将会用深度 CNN 编码成 4,096 维的矢量表示。...在我们的例子中,VGG-16 图像分类模型导入 224x224 分辨率的图像,生成对分类图像非常有用的 4,096 维特征矢量。...该算法会对长度 t 以内的 k 个最佳语句集反复考量,作为候选来生成 t + 1 大小的句子,只保留结果中的 k 个最佳选择。这允许开发者探索一个较大的优质注解空间,同时让推理在计算上可追踪。...在下面的例子里,算法保持了一个 k = 2 的候选句子列表,即每个垂直时间步到每个加粗词语的路线。 ? 局限性 对于学习把图像映射到人类级别的文字注解,该神经图像注解生成器提供了一个十分有用的框架。

    84660

    在图像的傅里叶变换中,什么是基本图像_傅立叶变换

    比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w...这两种滤波器都是在局部区域抑制图像的高频分量,模糊图像边缘的同时也抑制了噪声。还有一种非线性滤波-中值滤波器。中值滤波器对脉冲型噪声有很好的去掉。...比如说,消除噪音的同时图像的显示效果显著的提升了,那么,这时候就是同样的意思了。 常见的图像增强方法有对比度拉伸,直方图均衡化,图像锐化等。前面两个是在空域进行基于像素点的变换,后面一个是在频域处理。...对比度拉伸和直方图均衡化都是为了提高图像的对比度,也就是使图像看起来差异更明显一些,我想,经过这样的处理以后,图像也应该增强了图像的高频分量,使得图像的细节上差异更大。同时也引入了一些噪音。...若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。

    1.4K10

    PCA在图像降维的应用

    本篇文章将以简单的篇幅简单的介绍一下PCA在图像处理过程中的使用---降维。...在自然图像上进行训练时,对每一个像素单独估计均值和方差意义不大,因为(理论上)图像任一部分的统计性质都应该和其它部分相同,图像的这种特性被称作平稳性(stationarity)。...实际上,PCA算法对输入数据具有缩放不变性,无论输入数据的值被如何放大(或缩小),返回的特征向量都不改变。...更正式的说:如果将每个特征向量 x 都乘以某个正数(即所有特征量被放大或缩小相同的倍数),PCA的输出特征向量都将不会发生变化。...既然我们不做方差归一化,唯一还需进行的规整化操作就是均值规整化,其目的是保证所有特征的均值都在0附近。根据应用,在大多数情况下,我们并不关注所输入图像的整体明亮程度。

    1.8K90

    电脑识别图像的极限在何处?

    同样在图像识别方面:人类可以可以破碎的线索拼凑出模糊的图像,而电脑却不行。 论文的作者使用一组模糊、复杂的图像来确定计算机视觉模块与人类大脑的差异。...作者写到:“没有哪一个模块完全复制出人类识别过程中的急剧下跌。” 在经过专业训练后,计算机在识别MIRCs方面表现的更好些,但准确性比人类相比还是较低。...关于原因作者说道,这是因为电脑无法识别出图像中的独立部分,但人类可以。例如,在一张模糊的图像中有鹰的头和翅膀,人们可以通过模糊的图像指认出眼睛、嘴或翅膀。...作者提到,这种识别是“超过目前神经网络模块的能力”。 总的来说,电脑在图像识别上能做的很好,但并不是十分接近人类处理相同任务时的过程。...人类在进行图像识别时,可能先猜测图像是什么,然后再寻找特性验证或反驳最初的想法。如果是这样的话,这与计算机模块的工作程序完全不同。 转自|煎蛋(www.jiandan.com)

    1K110

    在图像中标注新的对象

    16]:一只正在吃草的熊。 由两个图像上的现有信息产生的描述。左边是训练数据中存在的对象(熊)的图像。在右边是模型在训练中没有见过的对象(食蚁兽)。...目前的视觉描述或图像描述模型工作得很好,但是它们只能描述在现有图像描述训练数据集中看到的对象,而且他们需要大量的训练样例才能生成好的描述。...然而,我们观察到,虽然模型是在ImageNet上预先训练好的,但是当模型在COCO图像 - 描述数据集上进行训练/调整时,往往会忘记之前看到的内容。...在训练期间,每批输入包含一些带有标签的图像,一组不同的图像和标题以及一些简单的句子。这三类输入数据训练网络中的不同部分。...字幕与不同的对象的图像。在CVPR,2017。

    1.7K110

    时间序列中的特征选择:在保持性能的同时加快预测速度

    在项目的第一部分中,我们必须要投入时间来理解业务需求并进行充分的探索性分析。建立一个原始模型。可以有助于理解数据,采用适当的验证策略,或为引入奇特的想法提供数据的支持。...在这篇文章中,我们展示了特征选择在减少预测推理时间方面的有效性,同时避免了性能的显着下降。tspiral 是一个 Python 包,它提供了各种预测技术。...在纯自回归的情况下,如果没有额外的外生变量,滞后目标值是提供良好预测的唯一有价值的信息。 这里采用了三种递归和直接方法。首先,使用过去长达168小时的所有延迟(full)。...最后只考虑在训练数据上选择的有意义的滞后(filtered)来拟合我们的模型。 可以看到最直接方法是最准确的。...而full的方法比dummy的和filter的方法性能更好,在递归的方法中,full和filtered的结果几乎相同。

    69120

    在 Linux 终端调整图像的大小

    ImageMagick 是一个方便的多用途命令行工具,它能满足你所有的图像需求。ImageMagick 支持各种图像类型,包括 JPG 照片和 PNG 图形。...调整图像大小 我经常在我的 Web 服务器上使用 ImageMagick 来调整图像大小。例如,假设我想在我的个人网站上发一张我的猫的照片。...Sleeping cats 你可以用 -resize 选项同时提供宽度和高度尺寸。但是,如果只提供宽度,ImageMagic 就会为你做计算,并通过调整输出图像的高度比例来自动保留长宽比。...在 Linux 上安装 ImageMagick 在 Linux 上,你可以使用你的包管理器安装 ImageMagick。...例如,在 Fedora 或类似系统上: $ sudo dnf install imagemagick 在 Debian 和类似系统上: $ sudo apt install imagemagick

    4.5K40

    图像处理在工程中的应用

    传感器 图像处理在工程和科研中都具有广泛的应用,例如:图像处理是机器视觉的基础,能够提高人机交互的效率,扩宽机器人的使用范围;在科研方面,相关学者把图像处理与分子动力学相结合,实现了多晶材料、梯度结构等裂纹扩展路径的预测...,具体见深度学习在断裂力学中的应用,以此为契机,偷偷学习一波图像处理相关的技术,近期终于完成了相关程序的调试,还是很不错的,~ 程序主要的功能如下:1、通过程序控制摄像头进行手势图像的采集;2、对卷积网络进行训练...,得到最优模型参数;3、对采集到的手势进行判断,具体如下图所示: 附:后续需要学习的内容主要包括:1、把无线数据传输集成到系统内部;2、提高程序在复杂背景下识别的准确率。...附录:补充材料 1、图像抓取:安装OpenCV、Python PIL等库函数,实现图片的显示、保存、裁剪、合成以及滤波等功能,实验中采集的训练样本主要包含五类,每类200张,共1000张,图像的像素为440...其中,ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False,frame就是每一帧的图像,是个三维矩阵,默认的像素值为640*480;img_x、img_y分别表示图像裁剪的起始位置

    2.3K30

    时间序列中的特征选择:在保持性能的同时加快预测速度

    在项目的第一部分中,我们必须要投入时间来理解业务需求并进行充分的探索性分析。建立一个原始模型。可以有助于理解数据,采用适当的验证策略,或为引入奇特的想法提供数据的支持。...在这篇文章中,我们展示了特征选择在减少预测推理时间方面的有效性,同时避免了性能的显着下降。tspiral 是一个 Python 包,它提供了各种预测技术。...在纯自回归的情况下,如果没有额外的外生变量,滞后目标值是提供良好预测的唯一有价值的信息。 这里采用了三种递归和直接方法。首先,使用过去长达168小时的所有延迟(full)。...最后只考虑在训练数据上选择的有意义的滞后(filtered)来拟合我们的模型 可以看到最直接方法是最准确的。...而full的方法比dummy的和filter的方法性能更好,在递归的方法中,full和filtered的结果几乎相同。

    66420

    【AI】:探索在图像领域的无限可能

    图像识别与分类的飞跃 AI在图像处理领域最为人所熟知的应用之一是图像识别与分类。随着深度学习算法的成熟,特别是卷积神经网络(CNN)的广泛应用,图像识别与分类的准确率已经达到了令人惊叹的高度。...图像分析与挖掘的洞察 在大数据分析领域,图像数据同样占据着重要地位。AI通过对海量图像数据的分析和挖掘,能够揭示出隐藏在数据背后的有价值信息。...应用:VAEs在图像生成、图像修复、图像风格迁移等领域都有广泛应用。它们能够生成多样化的图像样本,并且生成的图像在质量上通常也较高。 4....总之,AI在图像处理领域的深度探索与革新正在不断地改变着我们的世界。...我们有理由相信,在未来的日子里,AI将继续在图像处理领域发挥更大的作用,为我们带来更加丰富多彩、便捷高效的生活体验。

    14010

    粒子滤波在图像跟踪领域的实践

    三胖某天闲来无事射个导弹出去玩玩,导弹在刚出朝鲜领土时便被美帝的卫星间谍发现,卫星间谍神情高度紧张,它的程序虚拟出来一块包含朝鲜与美国的巨大立体三维空间,在这个空间中加入地球大气阻力系数,地心引力等等参数...这些沙子开始在空间中从朝鲜向着美帝飞去,刚刚进入太平洋的时候,位于夏威夷军事基地上的爱国者导弹发射了,它朝着太平洋中心飞去,因为程序中的那一大堆沙子构成的轨迹最多最粗的那一根 10 分钟后要经过太平洋中心的一个点...10 分钟后 2 个导弹在太平洋中心相遇了,粒子滤波成功预测了导弹的轨迹。   在粒子滤波过程中,X(t) 实际上是通过对大量粒子的状态进行处理得到的。...粒子滤波在图像跟踪领域的应用   在图像跟踪领域,有时候如果对于高分辨率拍摄的图像都进行全局检测,将导致整个程序运行过慢,而不能做到实时处理,达不到工业要求。...小结   上文主要是对粒子滤波与卡尔曼滤波原理进行了简单阐述,重点对粒子滤波与卡尔曼滤波的跟踪性能进行了对比实验,并以案例形式分析了粒子滤波在图像领域的应用。

    89610

    扩展的多曝光图像合成算法及其在单幅图像增强中的应用。

    一、Extended Exposure Fusion  这个文章虽然篇幅有十几页,但是实际上核心的东西就是一个:无中生有,即我们从原始的图像数据序列中fu在继续创造更多的图像,然后利用Exposure...45倾斜的直线),而Beta值的含义页可以从曲线总可以看出就是直线段的长度,即每幅图动态范围保持不变的部分。        ...那么很明显,如果要想借用多曝光融合算法来增强单幅图像,一个很自然的想法就是在原图的基础上使用不同曝光值进行映射(增强或降低对比度),然后融合就可以了,但是这里就涉及到了几个问题,第一,如果确定需要的曝光的图像的数量...有了这些曲线,在原有图像的基础上进行映射得到一个序列的图像,然后再用Exposure Fusion就可以了。   ...                            基于最大值/平均值的融合   其实想一想,道理也很简单,多焦距的图像,在非焦点区域,图像是模糊的,焦点区域图像是清晰的,因为模糊区域的拉普拉斯金字塔必然数较小

    71920

    在Jupyter Notebook中显示AI生成的图像

    使用合适的工具,您可以将想法转化为创意,通过将文本转换为生成的图像并使用数字媒体管理工具Cloudinary将其存储在云中。 OpenAI的高智能图像API使得显示AI生成的图像成为可能。...在本指南中,我将详细介绍如何构建一个基于用户输入的动态高效图像生成应用程序,并在Jupyter Notebook中显示图像输出。 什么是Jupyter Notebook?...如果他们没有输入提示,则当用户在空白输入上按下回车键时,提供的提示将显示图像。...在generate_image函数代码块中,它接受一个条件性地接受用户输入的提示。它使用图像生成端点根据变量response中的文本提示创建原始图像。 属性n = 1指示模型一次只生成一张图像。...有很多用例,本教程展示了一种使用文字生成自定义个性化图像的方法。此外,Cloudinary为其增添了最终润色,以便您可以重温创作非凡事物的记忆,并将图像安全地存储在云中的位置。

    8010
    领券