sql查询的数据(需要连接数据库),输出dataframe格式 to_sql:向数据库写入dataframe格式数据 连接 合并 重塑 merge:根据指定键关联连接多个dataframe,类似sql中的...join concat:合并多个dataframe,类似sql中的union pivot:按照指定的行列重塑表格 pivot_table:数据透视表,类似excel中的透视表 cut:将一组数据分割成离散的区间...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...agg:对每个分组应用自定义的聚合函数 transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum...sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化 pandas.DataFrame.plot.area:绘制堆积图 pandas.DataFrame.plot.bar
问题背景: 在进行数据处理和特征工程时,我们经常需要对数据进行重塑(reshape)操作,以符合特定的模型输入要求或数据处理需求。...解决方法: 在Python的数据分析和机器学习领域,我们通常使用pandas库来进行数据处理和分析。...其中一个常用的方法就是reshape(重塑)方法,它可以改变数据的维度和形状,使得数据适应于不同的操作和算法。...2.2. pandas中的reshape在使用pandas库处理数据时,也可以使用reshape方法对数据进行重塑操作。...reshape方法是一个在数据处理和机器学习中常用的方法,可以方便地调整数据的形状以适应不同的需求。无论是使用NumPy还是pandas,都提供了reshape方法来进行数组的重塑操作。
Pandas支持多种数据合并和重塑操作: 合并多个表的数据: merged_df = pd.merge (df1, df2, on='common_column') 重塑表格布局: reshaped_df...在处理多列数据时,DataFrame比Series更加灵活和强大。...横向合并DataFrame(Horizontal Merging of DataFrame) : 在多源数据整合过程中,横向合并是一个常见需求。...这些数据结构可以用来处理不同类型和形式的数据,并且可以进行索引和切片操作,方便数据的处理和操作。 强大的数据处理能力:Pandas能够对不同类型、大小和形状的数据进行灵活的处理。...此外,Pandas提供了丰富的数据处理和清洗方法,包括缺失数据的处理、数据重塑、合并、切片和索引等。
Pandas提供了强大的数据操作和分析功能,是数据科学的日常基本工具。在本文中,我们将介绍最常用的15个Pandas代码片段。这些片段将帮助简化数据分析任务,从数据集中提取有价值的见解。...DataFrame 的行或列上应用自定义函数,以实现更复杂的数据处理和转换操作。...# Converting a column to DateTime df['Date'] = pd.to_datetime(df['Date']) 9、数据重塑 pandas.melt() 是用于将宽格式...这个函数通常用于数据重塑(data reshaping)操作,以便更容易进行数据分析和可视化。...参数说明: frame:要进行重塑操作的数据表格(DataFrame)。
,有位粉丝提到了一个牛逼的库,它巧妙的将Pandas与GUI界面结合起来,使得我们可以借助GUI界面来分析DATaFrame数据框。 基于此,我觉得有必要写一篇文章,再为大家做一个学习分享。...image.png pandasgui的6大特征 pandasgui一共有如下6大特征: Ⅰ 查看数据帧和系列(支持多索引); Ⅱ 统计汇总; Ⅲ 过滤; Ⅳ 交互式绘图; Ⅴ 重塑功能; Ⅵ 支持csv...查看数据帧和系列 运行下方代码,我们可以清晰看到数据集的shape,行列索引名。...过滤 我们直接在Filters输入框中,输入a>=2,如下图所示。 image.png 输入公式后,接着点击Enter,即可完成对列的筛选。 image.png 4....重塑功能 pandasgui还支持数据重塑,像数据透视表pivot、纵向拼接concat、横向拼接merge、宽表转换为长表melt等函数。 image.png 6.
这些方法通常与单个元素的内置字符串方法具有匹配的名称,但是在每个值的列上逐个应用(记得逐元素计算吗?)。 创建一个新列Surname,其中包含乘客的姓氏,通过提取逗号前的部分。...pandas 中按名称选择多列很简单 In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list("abc")) In [2]: df...plyr plyr 是一个用于数据分析的 R 库,围绕着 R 中的三种数据结构 a(数组)、l(列表)和 d(数据框)展开。下表显示了这些数据结构在 Python 中的映射方式。...meltdf 在 R 中使用名为cheese的数据框的表达式,你想要重塑数据框: cheese <- data.frame( first = c('John', 'Mary'), last...meltdf 在 R 中使用名为cheese的数据框进行数据重塑的表达式: cheese <- data.frame( first = c('John', 'Mary'), last
这个和Pandas库用法相同。 (3)获取某列数据 # 要获取某列数据,直接传入这列的位置(即第几列即可)。...1.Numpy 数组的类型转换 这和Pandas理念一样,不同类型的数值可以做的运算是不一样的,所以要把我们拿到的数据转换成我们想要的数据类型。...在NumPy转换数据类型用的是 astype() ,在括号中指明要转换成的目标类型即可。...''' arr = np.array([1,2,3,2,1]) np.unique(arr) 六、Numpy 数组重塑:reshape() 所谓数组重塑就是更改数组的形状,比如将原来3行4列的数组重塑成...返回值: 重塑后的数组。 ''' 1.一维数组重塑 一维数组重塑就是将数组从1行或1列数组重塑为多行多列的数组。
这样的视频剪辑将存储在形状为 (40, 240, 1280, 720, 3) 的张量中。 ? 5 维张量的数据表示图如下: ?...重塑形状 重塑张量的形状意味着重新排列各个维度的元素个数以匹配目标形状。重塑形成的张量和初始张量有同样的元素。 ? 再看三个简单例子。 例一:生成一个 3×2 的矩阵,该矩阵里有 6 个元素。...在列上元素做 softmax,显然在列上元素求和都等于 1,因为有两行,所有最后结果是两个 1。 5.2 由简推繁 上节已经弄懂四种张量运算的类型了,本节再回到用神经网络来识别数字的例子。...重塑形状 X = x_train.reshape( x_train.shape[0], -1 ).T X.shape (784, 60000) 抛开样本数的维度,我们目标是把 2 维的“宽度和高度”重塑成...本来重塑后的形状是 (60000, 784),转置之后 X 形状是 (784, 60000)。
首先读入数据,这里使用到的全美婴儿姓名数据,包含了1880-2018年全美每年对应每个姓名的新生儿数据,在jupyterlab中读入数据并打印数据集的一些基本信息以了解我们的数据集: import pandas...输出多列数据 有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...不同的是applymap()将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...聚合数据框 对数据框进行聚合时因为有多列,所以要使用字典的方式传入聚合方案: data.agg({'year': ['max','min'], 'count': ['mean','std']}) ?
Python大数据分析 ❝本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes ❞ 1 简介 开门见山,在...pandas中,transform是一类非常实用的方法,通过它我们可以很方便地将某个或某些函数处理过程(非聚合)作用在传入数据的每一列上,从而返回与输入数据形状一致的运算结果。...图1 2 pandas中的transform 在pandas中transform根据作用对象和场景的不同,主要可分为以下几种: 2.1 transform作用于Series 当transform作用于单列...flipper_length_mm', 'body_mass_g']] .transform(lambda s: s.fillna(s.mean().round(2))) ) 图10 并且在pandas1.1.0...版本之后为transform引入了新特性,可以配合Cython或Numba来实现更高性能的数据变换操作,详细的可以阅读( https://github.com/pandas-dev/pandas/pull
首先读入数据,这里使用到的全美婴儿姓名数据,包含了1880-2018年全美每年对应每个姓名的新生儿数据,在jupyterlab中读入数据并打印数据集的一些基本信息以了解我们的数据集: import pandas...输入多列数据 apply()最特别的地方在于其可以同时处理多列数据,我们先来了解一下如何处理多列数据输入单列数据输出的情况。...有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...不同的是applymap()将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。
本文示例文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 开门见山,在pandas中,transform...是一类非常实用的方法,通过它我们可以很方便地将某个或某些函数处理过程(非聚合)作用在传入数据的每一列上,从而返回与输入数据形状一致的运算结果。 ...图1 2 pandas中的transform 在pandas中transform根据作用对象和场景的不同,主要可分为以下几种: 2.1 transform作用于Series 当transform...图5 而又因为transform传入的函数,在执行运算时接收的输入参数是对应的整列数据,所以我们可以利用这个特点实现诸如数据标准化、归一化等需要依赖样本整体统计特征的变换过程: # 利用transform...图10 并且在pandas1.1.0版本之后为transform引入了新特性,可以配合Cython或Numba来实现更高性能的数据变换操作,详细的可以阅读( https://github.com/pandas-dev
NumPy广泛地用于Pandas、SciPy、Matplotlib、sciket learn、scikit image和大多数其他数据科学和科学Python包中。...详情 添加、删除和排序元素 8 数组形状和大小 本节包括ndarray.ndim、ndarray.size、ndarray.shape 详情 数组形状和大小 9 重塑array 使用array.reshape...()将在不更改数据的情况下为数组提供新的形状。...详情 重塑array 10 如何将一维array转换为二维array(如何向数组添加新轴) 可以使用np.newaxis和np.expand_dims来增加现有array的维数。...有关Array的详细信息 如何创建array 添加、删除和排序元素 数组形状和大小 重塑array 如何将一维array转换为二维array(如何向数组添加新轴) 以上是先完工的10个小节的摘要介绍,想要学习完整章节的
,用于对单列、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁,本文就将针对pandas中的map()、apply()、applymap()、...年全美每年对应每个姓名的新生儿数据,在jupyterlab中读入数据并打印数据集的一些基本信息以了解我们的数据集: import pandas as pd #读入数据 data = pd.read_csv...,因此其返回结果的形状与原数据框一致,譬如下面的简单示例,我们把婴儿姓名数据中所有的字符型数据消息小写化处理,对其他类型则原样返回: def lower_all_string(x): if isinstance...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...● 聚合数据框 对数据框进行聚合时因为有多列,所以要使用字典的方式传入聚合方案: data.agg({'year': ['max','min'], 'count': ['mean','std']})
问题表示 本部分分为三部分; 他们是: 一位有效编码 输入-输出对 重塑数据 一个有效编码 我们将使用一个有效编码来表示LSTM的学习问题。...最后一步是重塑数据,使其可以被LSTM网络直接使用。...在一个输入数据序列的情况下,维数将是[4,1,5],因为我们有4行数据,每行1个时间步,每行5列。 我们可以从我们的X模式列表创建一个2D NumPy数组,然后将其重塑为所需的3D格式。...本部分分为四个部分: LSTM配置 LSTM训练 LSTM评估 LSTM完整示例 LSTM配置 我们希望LSTM做出一步式预测,我们已经在数据集的格式和形状中定义了这些预测。...在一个时期内,我们可以在每个序列上拟合模型,确保在每个序列之后重置状态。 考虑到问题的简单性,模型不需要长时间的训练; 在这种情况下只需要250个时期。
作者:Jay Alammar 翻译:张振东 本文多图例,建议阅读5分钟。 本文通过图例的方式,举例说明了pandas中旋转(pivot)和重塑(reshape)函数的实现方式。...我喜欢使用python的pandas包进行数据分析。...10分钟掌握pandas (https://pandas.pydata.org/pandas-docs /stable/getting_started/10min.html) 是学习如何使用它进行数据分析的好地方...一旦掌握了基本原理,并开始使用重塑函数和透视表,事情就变得有趣多了。之前的文章展示了一些更有趣的数据重塑函数,下面是一些与pandas重塑相关的图例: 旋转(Pivot) ?...原文标题: Visualizing Pandas' Pivoting and Reshaping Functions 原文链接: https://jalammar.github.io/visualizing-pandas-pivoting-and-reshaping
在要画图的列上调用 .plot() 方法并传入 kind 参数。该方法适用于数据框和Series object。...里面使用iris (现搜的) 第一种方法时从sklearn库里面获取,没有第五列,也不是个规范的数据框,不甚推荐 !...sklearn import datasets iris = datasets.load_iris() print(iris.data) 第二种方法是从seaborn库里获取,代码简单,是一个有5列的数据框...两变量的图不是在单列上调用.plot方法,而是在整个数据框上调用。...# Boxplot iris.boxplot(column='sepal_length', by='species') plt.show() 也可以直接对整个数据框的每列画箱线图,字符串列会自动跳过去
一、引言Pandas 是一个强大的 Python 数据分析库,主要用于处理结构化数据。尽管它并不是专门为图像处理设计的,但在某些情况下,我们可以利用 Pandas 的强大功能来辅助图像处理任务。...解决方法: 在创建 DataFrame 之前,确保指定正确的数据类型。df_img = pd.DataFrame(img_array, dtype=np.uint8)2...."ValueError: could not broadcast input array from shape (X,Y,Z) into shape (A,B,C)"这种错误通常是由于尝试将形状不兼容的数据放入...避免措施: 确保输入数据的形状与预期一致。如果是多维数组,检查是否正确展平或重塑。...通过掌握上述基础知识、常见问题及其解决方案,我们可以在适当的情况下灵活运用 Pandas 来完成图像处理任务。
几乎所有使用Python处理分析数据的人都用过Pandas,因为实在太方便了,就像Excel一样,但你知道Pandas是基于Numpy开发出来的吗?...Pandas和Numpy的关系类似于国产安卓系统和原生安卓,Numpy提供底层数据结构和算法,搭配数据面板的分析模式,缔造了Pandas。...np.zeros(shape, dtype=float, order='C'): 返回一个给定形状和数据类型的数组,其中所有元素都为 0。...np.ones(shape, dtype=None, order='C'): 返回一个给定形状和数据类型的数组,其中所有元素都为 1。...np.reshape(a, newshape, order='C'): 将数组 a 重塑为 newshape 指定的形状。
: 神奇的是,pandas已经将第一列作为索引了: 需要注意的是,如果你想要你的工作在未来可复制,那么read_clipboard()并不值得推荐。...注:该方法在机器学习或者深度学习中很有用,因为在模型训练前,我们往往需要将全部数据集按某个比例划分成训练集和测试集。该方法既简单又高效,值得学习和尝试。...换句话说,sum()函数的输出: 比这个函数的输入要小: 解决的办法是使用transform()函数,它会执行相同的操作但是返回与输入数据相同的形状: 我们将这个结果存储至DataFrame中新的一列...这使得该数据难以读取和交互,因此更为方便的是通过unstack()函数将MultiIndexed Series重塑成一个DataFrame: 该DataFrame包含了与MultiIndexed Series...额外技巧 Profile a DataFrame 假设你拿到一个新的数据集,你不想要花费太多力气,只是想快速地探索下。那么你可以使用pandas-profiling这个模块。
领取专属 10元无门槛券
手把手带您无忧上云