首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

嘀~正则表达式快速上手指南(下篇)

将转换完的字符串添加到 emails_dict 字典中,以便后续能极其方便地转换为pandas数据结构。 在步骤3B中,我们对 s_name 进行几乎一致的操作. ?...如果使用 pandas 包来解决这个问题的话 会遇到问题 ,因此,我们选择使用 email 包。 创建字典列表 最后,添加字典emails_dict到 emails 列表: ?...使用 pandas 处理数据 如果使用 pandas 库处理列表中的字典 那将非常简单。每个键会变成列名, 而键值变成行的内容。 我们需要做的就是使用如下代码: ?...也可以精确地查找。例如,查找从特定域名发来的邮件。但是,我们需要先学习一种新的正则表达式来完成精确查询工作。 管道符号, |, 用于查找位于它两边的任意字符。 如, a|b查找 a 或 b。...第1步,查找包含字符串"@maktoob"的列 "sender_email" 对应的行索引。请留意我们是如何使用正则表达式来完成这项任务的。 ?

4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    go从已知列表中查找字符串

    01 May 2016 go从已知列表中查找字符串 最近在开发中遇到一个需求,需要查找某个给定的字符串是否属于有效字符串。...例如以下字符串都是有效字符串: "key1" "key2" "key3" "key4" "key5" "key6" 若查找的字符串是key1,存在key1,所以key1是有效字符串,若查找的字符串是key0...validKeyMap[key] { fmt.Println("found via map") } else { fmt.Println("not found via map") } 方式二:遍历列表...key5", "key6", } 通过遍历切片查找特定字符串,如下: var found bool key := "key1" for index := range validKeyList {...若查找的字符串是key1,则时间复杂度O(1),但是若查找的字符串是最后一个字符串时,时间复杂度和方式二一样,都是O(N),N表示字符串个数,但是该方式没有没有使用任何数据结构,如果对内存开销要求高,可以推荐使用

    2.9K70

    Linux-在指定文件类型中递归查找到目标字符串

    当前目录 ---- 按文件名查找: -name: 查找时文件名大小写敏感。 -iname: 查找时文件名大小写不敏感 ---- ‘*.conf’ 文件类型。...比如这里查询的是.conf类型的文件,要查找 xml结尾的 *.xml等等….. ---- xargs命令: 该命令的主要功能是从输入中构建和执行shell命令 在使用find命令的-exec选项处理匹配到的文件时...但有些系统对能够传递给exec的命令长度有限制,这样在find命令运行几分钟之后,就会出现溢出错误。错误信息通常是“参数列太长”或“参数列溢出”。...在有些系统中,使用-exec选项会为处理每一个匹配到的文件而发起一个相应的进程,并非将匹配到的文件全部作为参数一次执行;这样在有些情况下就会出现进程过多,系统性能下降的问题,因而效率不高; 而使用xargs...另外,在使用xargs命令时,究竟是一次获取所有的参数,还是分批取得参数,以及每一次获取参数的数目都会根据该命令的选项及系统内核中相应的可调参数来确定。

    1.8K50

    1000+倍!超强Python『向量化』数据处理提速攻略

    这是一个非常基本的条件逻辑,我们需要为lead status创建一个新列。 我们使用Pandas的优化循环函数apply(),但它对我们来说太慢了。...看下面的例子: numpy.where()它从我们的条件中创建一个布尔数组,并在条件为真或假时返回两个参数,它对每个元素都这样做。这对于在Dataframe中创建新列非常有用。...1、字符串 假设你需要在一系列文本中搜索特定的模式,如果匹配,则创建一个新的series。这是一种.apply方法。...4、使用来自其他行的值 在这个例子中,我们从Excel中重新创建了一个公式: 其中A列表示id,L列表示日期。...因此,如果你有一个4核的i7,你可以将你的数据集分成4块,将你的函数应用到每一块,然后将结果合并在一起。注意:这不是一个很好的选择! Dask是在Pandas API中工作的一个不错的选择。

    6.9K41

    Pandas全景透视:解锁数据科学的黄金钥匙

    在这个充满各种选项的时代,为什么会有这么多人选择 Pandas 作为他们的数据分析工具呢?这个问题似乎简单,但背后涉及了许多关键因素。在探究这个问题之前,让我们先理解一下 Pandas 的背景和特点。...DataFrame的一列就是Series,Series可以转化为DataFrame,调用方法函数to_frame()即可 Series 是 pandas 中的一种数据结构,可以看作是带有标签的一维数组。...值(Values): 值是 Series 中存储的实际数据,可以是任何数据类型,如整数、浮点数、字符串等。...举个例子# 创建一个列表list1 = [1, 2, 3]# 创建另一个列表list2 = [4, 5, 6]# 使用 extend() 方法将 list2 扩展到 list1list1.extend(...= pd.DataFrame({ 'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]})# 查找列'A'中大于3的所有行,并将结果转换为64位整数result

    13610

    python数据分析——数据预处理

    subset:可选参数,默认为None,表示只在指定的列或行中查找缺失值并删除,可以是列名或行标签。...# 至少保留2个非缺失值的行 df.dropna(thresh=2) # 只在'A'列和'B'列中查找并删除缺失值 df.dropna(subset=['A', 'B']) 示例一 【例】当某行或某列值都为...查找重复值 duplicated() Python的duplicated函数是pandas库中的一个函数,用于判断DataFrame或Series中的元素是否重复。...可以是单个列名的字符串,也可以是列名列表。 drop:指示是否在新索引中保留原有的列。默认为True,表示将原有的列从DataFrame中删除。 append:指示是否将新的索引添加到原有的索引之后。...需要注意的是,insert()方法会改变原始列表,而不是创建一个新的列表。如果希望在不改变原始列表的情况下插入元素,可以使用切片和拼接操作来实现。

    22510

    Pandas中替换值的简单方法

    使用内置的 Pandas 方法进行高级数据处理和字符串操作 Pandas 库被广泛用作数据处理和分析工具,用于从数据中清理和提取特征。 在处理数据时,编辑或删除某些数据作为预处理步骤的一部分。...这可能涉及从现有列创建新列,或修改现有列以使它们适合更易于使用。为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型的列。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列(列)中的字符串...Pandas 中的 replace 方法允许您在 DataFrame 中的指定系列中搜索值,以查找随后可以更改的值或子字符串。...首先,如果有多个想要匹配的正则表达式,可以在列表中定义它们,并将其作为关键字参数传递给 replace 方法。然后,只需要显式传递另一个关键字参数值来定义想要的替换值。

    5.5K30

    如何使用`grep`命令在文本文件中查找特定的字符串?

    如何使用grep命令在文本文件中查找特定的字符串? 摘要 在这篇技术博客中,我将详细介绍如何使用grep命令在文本文件中查找特定的字符串。...引言 在日常工作中,我们经常需要在文件中查找特定的字符串,以便进行分析、调试或修改。而grep命令正是为此而生。它提供了丰富的搜索选项和灵活的使用方式,可以满足各种需求。...grep是一个强大的文本搜索工具,用于在文件中查找匹配特定模式的字符串。它的名称来源于Unix中的一个命令“Global Regular Expression Print”,意为全局正则表达式打印。...例如: grep "hello" example.txt 这将在example.txt文件中查找包含字符串"hello"的所有行。 正则表达式匹配 grep支持使用正则表达式进行更复杂的匹配。...example.txt 逆向搜索 grep -v "pattern" file_name grep -v "pattern" file_name 总结 通过本文的学习,您现在应该已经了解了如何使用grep命令在文本文件中查找特定的字符串

    21100

    Pandas速查卡-Python数据科学

    刚开始学习pandas时要记住所有常用的函数和方法显然是有困难的,所以在Dataquest(https://www.dataquest.io/)我们主张查找pandas参考资料(http://pandas.pydata.org..., URL或文件. pd.read_html(url) 解析html URL,字符串或文件,并将表提取到数据框列表 pd.read_clipboard() 获取剪贴板的内容并将其传递给read_table...(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数 data.apply(np.max,axis=1) 在每行上应用一个函数...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.

    9.2K80

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....pandas 可以创建 Excel 文件、CSV 或许多其他格式。 数据操作 1. 列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。...在 Pandas 中,您可以直接对整列进行操作。 pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。...查找字符串长度 在电子表格中,可以使用 LEN 函数找到文本中的字符数。这可以与 TRIM 函数一起使用以删除额外的空格。...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20
    领券