教程地址:http://www.showmeai.tech/tutorials/36
ShowMeAI为斯坦福CS224n《自然语言处理与深度学习(Natural Language Processing with Deep Learning)》课程的全部课件,做了中文翻译和注释,并制作成了GIF动图!视频和课件等资料的获取方式见文末。
本系列为斯坦福CS224n《自然语言处理与深度学习(Natural Language Processing with Deep Learning)》的全套学习笔记,对应的课程视频可以在 这里 查看。
选自斯坦福 机器之心编译 参与:李泽南、Smith 近日,斯坦福大学发布了 Stanford.NLP for .Net,为自然语言处理领域的开发者们提供帮助。顾名思义,它是 Stanford NLP 为.NET 准备的版本。 链接:https://sergey-tihon.github.io/Stanford.NLP.NET/ 该项目包含使用使用 IKVM.NET 将 Stanford NLP.jar 软件包重新编译到.NET 中的构建脚本,这些软件经过测试可以有效工作,该工具包的介绍网站是:https:/
我记得我第一次听说深度学习在自然语言处理(NLP)领域的魔力。 我刚刚与一家年轻的法国创业公司Riminder开始了一个项目,这是我第一次听说字嵌入。 生活中有一些时刻,与新理论的接触似乎使其他一切无关紧要。 听到单词向量编码了单词之间相似性和意义就是这些时刻之一。 当我开始使用这些新概念时,我对模型的简单性感到困惑,构建了我的第一个用于情感分析的递归神经网络。 几个月后,作为法国大学高等理工学院硕士论文的一部分,我正在 Proxem 研究更高级的序列标签模型。
大部分课程视频(有字幕)已经上线,所有的课程PPT都已经放出,课程中的优秀项目也已经公开。
命名实体识别(Named Entity Recognition,简称NER),又称作“专名识别”,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。通常包括两部分:(1)实体边界识别;(2) 确定实体类别(人名、地名、机构名或其他)。
-欢迎 该项目包含使用使用 IKVM.NET 将 Stanford NLP.jar 软件包重新编译到.NET 中的构建脚本,这些软件经过测试可以有效工作,该工具包的介绍网站是:https://serg
选自TowardsDataScience 作者:Priya Dwivedi 机器之心编译 参与:Pedro、路 本文介绍了如何基于 SQuAD 数据集搭建问答系统及其重要组件。 我最近很愉快地完成了斯坦福深度学习自然语言处理课程(CS224N),学到了很多新的东西。在结课项目中我基于斯坦福问答数据集(SQuAD)实现了一个问答系统。在这篇博客中,我将为大家介绍搭建问答系统所需要的主要模块。 完整代码 GitHub 地址:https://github.com/priya-dwivedi/cs224n-Squa
作者:Talha Chafekar翻译:顾伟嵩校对:阿笛 本文约1400字,建议阅读5分钟本文探讨了单词和n-grams的不同组合方法,以及如何借助基于树的表示法,以自底向上的方式预测短语或单词的二元或多类(本例中为5)细粒度情感。
ShowMeAI为斯坦福CS224n《自然语言处理与深度学习(Natural Language Processing with Deep Learning)》课程的全部课件,做了中文翻译和注释,并制作成了GIF动图!
【新智元导读】斯坦福张首晟团队创造了一个人工智能程序Atom2Vec,只用几个小时就重新得出了元素周期表。这项研究更宏大的目标是设计出替代作为机器智能标准的图灵检验的新标准。张首晟教授在接受新智元采访时认为,实验是检验规律的唯一标准,人类可以通过实验来认证人工智能做出的理论预言。
【磐创AI导读】:本文主要介绍自然语言处理中的经典问题——命名实体识别的两种方法。想要学习更多的机器学习知识,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
条件随机场(CRF)由Lafferty等人于2001年提出,结合了最大熵模型和隐马尔可夫模型的特点,是一种无向图模型,常用于标注或分析序列资料,如自然语言文字或是生物序列。近年来在分词、词性标注和命名实体识别等序列标注任务中取得了很好的效果。
StanfordNLP是一个软件包组合,包括斯坦福团队在CoNLL 2018 的通用依存解析(Universal Dependency Parsing)共享任务上使用的软件包,以及斯坦福CoreNLP软件的官方Python接口。
欢迎阅读自然语言处理系列教程,使用 Python 的自然语言工具包 NLTK 模块。
词向量、词嵌入(word vector,word embedding)也称分布式表示(distributed representation),想必任何一个做NLP的研究者都不陌生。如今词向量已经被广泛应用于各自NLP任务中,研究者们也提出了不少产生词向量的模型并开发成实用的工具供大家使用。在使用这些工具产生词向量时,不同的训练数据,参数,模型等都会对产生的词向量有所影响,那么如何产生好的词向量对于工程来说很重要。中科院自动化所的来斯惟博士对此进行了详细的研究。本篇也是我阅读来博士发表的论文《How to
在文本自动理解的NLP任务中,命名实体识别(NER)是首要的任务。NER模型的作用是识别文本语料库中的命名实体例如人名、组织、位置、语言等。
AI 科技评论按:不久前,微软发布了用于学习通用语言嵌入的多任务深度神经网络模型——MT-DNN,它集成了 MTL 和 BERT 语言模型预训练二者的优势,在 10 项 NLU 任务上的表现都超过了 BERT,并在通用语言理解评估(GLUE)、斯坦福自然语言推理(SNLI)以及 SciTail 等多个常用 NLU 基准测试中取得了当前最佳成绩。微软在官方博客上对该模型进行了介绍,AI 科技评论编译如下。
安妮 编译整理 量子位 出品 | 公众号 QbitAI 氢氦锂铍硼,碳氮氧氟氖… 传说要想学好化学,得先打败一只神兽,并且一旦攻破神兽,就能学好一半了。这到底是何方神圣,居然有如此大威力? 答案就是:
情感分析是一种流行的文本分析技术,用来对文本中的主观信息进行自动识别和分类。它被广泛用于量化观点、情感等通常以非结构化方式记录的信息,而这些信息也因此很难用其他方式量化。情感分析技术可被用于多种文本资源,例如调查报告、评论、社交媒体上的帖子等。
作者:伏草惟存 来源:http://www.cnblogs.com/baiboy/p/nltk2.html 1 Python 的几个自然语言处理工具 NLTK:NLTK 在用 Python 处理自然语言的工具中处于领先的地位。它提供了 WordNet 这种方便处理词汇资源的借口,还有分类、分词、除茎、标注、语法分析、语义推理等类库。 Pattern:Pattern 的自然语言处理工具有词性标注工具(Part-Of-Speech Tagger),N元搜索(n-gram search),情感分析(senti
本文使用tf-idf(词频-逆文件频率)、lsi(潜在语义索引)和 doc2vec(文档向量化嵌入)这3种最基础的NLP文档嵌入技术,对文本进行嵌入操作(即构建语义向量)并完成比对检索,构建一个基础版的文本搜索引擎。
据英国《卫报》报道,美国Google公司的杰夫•辛顿教授宣称,谷歌正在开发一种新型人工智能算法,该算法具有逻辑、自然对话甚至调情的能力。 辛顿教授表示谷歌正在研究的这种新型人工智能算法可以将认知编码为一系列数字,他称之为“认知向量”。他提到虽然研发工作还处于早期阶段,但现在已找到一种方法使当前的软件变得更加高级,使之具备类似人类的推理逻辑能力。他表示,该软件将具备基本常识。 辛顿认为,“认知向量”的方法将有助于人工智能技术攻破两个主要挑战:掌控自然、会话语言和逻辑跳跃能力。在过去的20年间,科学家已经为了克
来自斯坦福的研究人员提出了𝘚𝘬𝘦𝘵𝘤𝘩-𝘢-𝘚𝘬𝘦𝘵𝘤𝘩,一个能够将草图变成画作的模型。
机器之心报道 机器之心编辑部 这个脑机接口可以让语言障碍患者以每分钟 62 个单词的速度进行交流 —— 速度达到了之前 SOAT 脑机接口的 3.4 倍,并开始接近自然对话的速度。 在众多研究脑机接口(brain-computer interface,BCI)的科研团队中,斯坦福大学霍华德・休斯医学研究所研究科学家 Frank Willett 所在的团队绝对是值得关注的一个。 2021 年 5 月份,他们实现了一项重要突破,首次破译了「与手写笔迹相关」的大脑活动,可以让瘫痪患者不用手也能快速打字。 具体来讲
在本文中,我列出了当今最常用的 NLP 库,并对其进行简要说明。它们在不同的用例中都有特定的优势和劣势,因此它们都可以作为专门从事 NLP 的优秀数据科学家备选方案。每个库的描述都是从它们的 GitHub 中提取的。
主要资源来自TensorFlow中文社区,翻译借助谷歌翻译,仅用于资源分享。 以下是根据不同语言类型和应用领域收集的各类工具库,持续更新中。 C 通用机器学习 推荐人 -一个产品推荐的Ç语言库,利用了协同过滤。 计算机视觉 CCV – C / Cached /核心计算机视觉库,是一个现代化的计算机视觉库。 VLFeat – VLFeat是开源的计算机视觉算法库,有Matlab工具箱。 ---- C ++ 计算机视觉 OpenCV – 最常用的视觉库。有C ++,C,Python以及Java接口),支持Win
互联网发展的数十年来,技术在飞速前进,伴随着海量结构化表格数据的存储,结构化数据上的商业智能分析挖掘发展,也有海量的非结构化数据散布于各个互联网平台:
除了可以从任意位置开始,无限生成多样化且连贯的3D场景,WonderJourney根据文本描述生成时,可控性也很高。
前几年,腾讯新闻曾发出一片具有爆炸性的文章。并不是文章的内容有什么新奇之处,而是文章的作者与众不同,写文章的不是人,而是网络机器人,或者说是人工智能,是算法通过分析大量财经文章后,学会了人如何编写财经报道,然后根据相关模式,把各种财经数据组织起来,自动化的生成一篇文章,当人阅读时,根本无法意识到文章不是人写,而是电脑生成的。
根据斯坦福人工智能实验室官方Twitter消息,深度学习自然语言处理领军人、斯坦福教授Chris Manning将接替李飞飞,成为该实验室最新一任负责人。
【导读】如何评定一首歌的歌词的创造性?有些歌词是否真的套词或假借他人之手?本文作者就尝试用 NLP 技术分析了一位出名却也具有争议的嘻哈歌手 —— Drake 创作的歌词,来看看他的歌词中到底蕴藏着什么秘密。
领取专属 10元无门槛券
手把手带您无忧上云