首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在没有ReportViewer的情况下导出的PDF没有数据-为空

,可能是由于以下几个原因导致的:

  1. 数据源问题:导出的PDF没有数据可能是因为数据源没有正确连接或者没有正确查询数据。首先,确保你的数据源连接是正确的,并且查询语句能够返回正确的数据。
  2. 导出设置问题:导出PDF时,可能需要设置一些导出选项,例如选择导出的数据范围、导出的格式等。确保你的导出设置是正确的,包括选择正确的数据范围和导出格式。
  3. 导出代码问题:如果你是通过编程实现导出PDF的功能,可能是导出代码中存在问题导致没有数据。检查你的导出代码,确保数据正确地传递给导出功能,并且没有错误的逻辑或条件导致没有数据被导出。

如果以上方法都没有解决问题,你可以尝试以下解决方案:

  1. 检查日志:查看系统日志或者导出功能的日志,看是否有任何错误或者异常信息。这些信息可能会提供更多关于问题的线索。
  2. 联系技术支持:如果你使用的是某个特定的开发框架或者工具,可以联系该框架或者工具的技术支持团队,向他们咨询关于导出PDF没有数据的问题。
  3. 使用其他工具:如果你无法解决问题,可以尝试使用其他的导出工具或者库来导出PDF。有很多开源的PDF导出工具可供选择,你可以尝试使用其中的一个来解决问题。

总结起来,导出的PDF没有数据可能是由于数据源问题、导出设置问题、导出代码问题等原因导致的。通过检查数据源连接、导出设置、导出代码以及查看日志等方法,可以帮助你解决这个问题。如果问题仍然存在,可以考虑联系技术支持或者尝试其他的导出工具来解决问题。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

在没有 Mimikatz 的情况下操作用户密码

在渗透测试期间,您可能希望更改用户密码的常见原因有两个: 你有他们的 NT 哈希,但没有他们的明文密码。将他们的密码更改为已知的明文值可以让您访问不能选择 Pass-the-Hash 的服务。...您没有他们的 NT 哈希或明文密码,但您有权修改这些密码。这可以允许横向移动或特权升级。...虽然Mimikatz是最好的攻击工具之一,但我会尽量避免使用它,因为它是反病毒和 EDR 工具的高度目标。在这篇文章中,我将专门讨论用例 #2 — 为横向移动或权限提升重置密码。...一旦离线,Mimikatz可以在不被发现的情况下使用,但也可以使用Michael Grafnetter的 DSInternals 进行恢复。...使用 Impacket 重置 NT 哈希并绕过密码历史 PR#1172 另一个需要注意的是,在将密码哈希设置回其原始值后,该帐户会被设置为已过期的密码。

2.1K40

V-3-3 在没有vCenter的情况下

在使用vSphere客户端登陆到ESXi服务器的时候,由于没有安装vCenter,而发现无法克隆虚拟机。...在有vCenter的情况下,可以创建一个模板虚拟机后,右键直接克隆一台虚拟机。或者将虚拟机转换为模板后,以模板创建虚拟机。...如果没有vCenter而现在要创建多台相同的虚拟机的时候可以使用模板来创建虚拟机。 这里说到一个情况是在既没有VCenter和模板的情况下,如何快速复制多台相同的虚拟机。...进入需要复制的模板虚拟机,选中所有的文件并且右键复制。 ? 在新的文件夹中粘贴。 提示:可以进入ssh界面,通过命令行进行复制。...存储的路径如图,为: /vmfs/volumes/datastore1/下。使用命令cp –r来复制需要复制的虚拟机。 ? 复制完虚拟机后,进入新虚拟机的文件夹右键vmx文件,添加到服务器清单。

1.1K20
  • vAttention:用于在没有Paged Attention的情况下Serving LLM

    前言(太长不看版) paper链接:https://arxiv.org/pdf/2405.04437v1 之前浏览 vllm 的时候看到一篇尝试去掉 vLLM 的 PagedAttention,利用 CUDA...挑战和优化:vAttention 解决了在没有 PagedAttention 的情况下实现高效动态内存管理的两个关键挑战。首先,CUDA API 支持的最小物理内存分配粒度为 2MB。...如果没有,则同步映射所需的页。 0x6.2.2 延迟回收 + 预先分配 我们观察到,在许多情况下,可以避免为新请求分配物理内存。例如,假设请求在迭代中完成,而新请求在迭代中加入运行批次。...在大多数情况下,这些优化确保新到达的请求可以简单地重用先前请求分配的物理内存页。因此,vAttention几乎没有开销,其 prefill 性能与vLLM一样出色。 图11....0x7.4 内存碎片分析 表8显示了块大小(定义为页中最小的 token 数)以及在最坏情况下因过度分配而可能浪费的物理内存量。最坏情况发生在分配了一个新页但完全未使用的情况下。

    48510

    在没有数据的情况下使用贝叶斯定理设计知识驱动模型

    数据是模型的基础,但是没有数据只有领域专家也可以很好地描述或甚至预测给定环境的“情况”。...只有结合起来才能形成专家知识的表示。 贝叶斯图是有向无环图(DAG) 上面已经提到知识可以被表示为一个系统的过程可以看作一个图。在贝叶斯模型的情况下,图被表示为DAG。但DAG到底是什么?...首先,在知识驱动模型中,CPT不是从数据中学习的(因为没有数据)。相反,概率需要通过专家的提问得到然后存储在所谓的条件概率表(CPT)(也称为条件概率分布,CPD)中。...总的来说,我们需要指定4个条件概率,即一个事件发生时另一个事件发生的概率。在我们的例子中,在多云的情况下下雨的概率。因此,证据是多云,变量是雨。...这里我们需要定义在多云发生的情况下喷头的概率。因此,证据是多云,变量是雨。我能看出来,当洒水器关闭时,90%的时间都是多云的。

    2.2K30

    标注工具doccano导出数据为空的解决办法

    地址:https://github.com/taishan1994/doccano_export doccano_export 使用doccano标注工具同时导出实体和关系数据为空的解决办法。...其它的一些标注方法这里就不展开了。 导出数据 找到db.sqlite3的位置,替换doccano_export.py里面的,然后替换project_id为自己的项目id。最后执行该文件。...在data目录下会生成doccano_ext.json。就可以用于百度的UIE的微调任务了。...补充: windows用户db.sqlite3在C:\Users\用户名\doccano\,Linux用户在:/home/用户名/doccano/下(应该是,没有的话自己去其它位置找找)。...confirm用于控制是否只导出标记为√的结果。 export_relations用于控制是否输出关系标注结果,如不存在关系标注,将其置为False。

    1.2K30

    研究人员开发机器学习算法,使其在没有负面数据的情况下进行分类

    来自RIKEN Center高级智能项目中心(AIP)的研究团队成功开发了一种新的机器学习方法,允许AI在没有“负面数据”的情况下进行分类,这一发现可能会在各种分类任务中得到更广泛的应用。...就现实生活中的项目而言,当零售商试图预测谁将购买商品时,它可以轻松地找到已经购买商品的客户的数据(正面数据),但基本上不可能获得没有购买商品的客户的数据(负面数据),因为他们无法获得竞争对手的数据。...他们成功地开发了一种方法,可以让计算机只从正面的数据和信息中学习边界分类,从而对机器学习的分类问题进行正面和负面的划分。 为了了解系统运作情况,他们在一组包含各种时尚商品标记的照片上使用它。...然后他们在“T恤”照片上附上了置信分数。他们发现,如果不访问负面数据,在某些情况下,他们的方法与一起使用正面和负面数据的方法一样好。 Ishida指出,“这一发现可以扩展可以使用分类技术的应用范围。...即使在正面使用机器学习的领域,我们的分类技术也可以用于新的情况,如由于数据监管或业务限制数据只能收集正面数据的情况。

    80040

    NeurIPS 2023 | 在没有自回归模型的情况下实现高效图像压缩

    然而,这些方法的计算效率提升是以相对于自回归模型而言的率失真性能降低为代价的。...:最后,通过在相关性图上应用 L_2 范数来计算相关性损失,这一损失衡量了模型中潜在变量之间在空间上的解相关程度。...left(x, \hat{x}\right)\right] + \alpha \cdot [L_{corr}]\\ & \tag{5} \end{align*} 实验 实验设置 训练集:Vimeo-90k数据集...测试集:Kodak数据集 基线模型使用公式 (4) 中给出的损失函数进行训练,具有相关性损失的模型使用公式 (5) 中修改后的损失函数进行训练。...实验表明,本文所提出的方法在不修改熵模型和增加推理时间的情况下,显著提高了率失真性能,在性能和计算复杂性之间取得了更好的 trade-off 。

    45310

    在没有 try-with-resources 语句的情况下使用 xxx 是什么意思

    在没有使用 try-with-resources 语句的情况下使用 xxx,意味着在代码中没有显式地关闭 xxx对象资源,如果没有使用 try-with-resources,那么在使用xxx对象后,需要手动调用...语句中,可以自动管理资源的关闭。...使用 try-with-resources 语句时,可以在 try 后面紧跟一个或多个资源的声明,这些资源必须实现了 AutoCloseable 或 Closeable 接口。...在 try 代码块执行完毕后,无论是否发生异常,都会自动调用资源的 close() 方法进行关闭。...使用 try-with-resources 可以简化资源释放的代码,并且能够确保资源在使用完毕后得到正确关闭,避免了手动关闭资源可能出现的遗漏或错误。

    4.1K30

    【黄啊码】MySQL入门—17、在没有备份的情况下,如何恢复数据库数据?

    我是黄啊码,MySQL的入门篇已经讲到第16个课程了,今天我们继续讲讲大白篇系列——科技与狠活之恢复数据库在没做数据库备份,没有开启使用 Binlog 的情况下,尽可能地找回数据。...下面我们就来看下没有做过备份,也没有开启 Binlog 的情况下,如果.ibd 文件发生了损 坏,如何通过数据库自身的机制来进行数据恢复。...通常设置为 1 即可。2. 备份数据表在备份数据之前,需要准备一个新的数据表,这里需要使用 MyISAM 存储引擎。原因很简 单,InnoDB 存储引擎已经写保护了,无法将数据备份出来。...在模拟损坏.ibd 文件之前,我们需要先关闭掉 MySQL 服务,然后用编辑器打开 t1.ibd,类似下图所示: 文件是有二进制编码的,看不懂没有关系,我们只需要破坏其中的一些内容即可,比如我在 t1....我刚才讲过这里使用 MyISAM 存储引擎是因为 在innodb_force_recovery=1的情况下,无法对 innodb 数据表进行写数据。

    5.9K40

    在GAN中通过上下文的复制和粘贴,在没有数据集的情况下生成新内容

    魔改StyleGAN模型为图片中的马添加头盔 介绍 GAN体系结构一直是通过AI生成内容的标准,但是它可以实际在训练数据集中提供新内容吗?还是只是模仿训练数据并以新方式混合功能?...GAN的局限性 尽管GAN能够学习一般数据分布并生成数据集的各种图像。它仍然限于训练数据中存在的内容。例如,让我们以训练有素的GAN模型为例。...尽管它可以生成数据集中不存在的新面孔,但它不能发明具有新颖特征的全新面孔。您只能期望它以新的方式结合模型已经知道的内容。 因此,如果我们只想生成法线脸,就没有问题。...但是,如果我们想要眉毛浓密或第三只眼的脸怎么办?GAN模型无法生成此模型,因为在训练数据中没有带有浓密眉毛或第三只眼睛的样本。...例如,假设我们有一个在马匹上训练过的StyleGAN模型,并且我们想重写该模型以将头盔戴在马匹上。我们将所需的特征头盔表示为V ‘,将上下文中的马头表示为K’。

    1.6K10

    谷歌AI在没有语言模型的情况下,实现了最高性能的语音识别

    谷歌AI研究人员正在将计算机视觉应用于声波视觉效果,从而在不使用语言模型的情况下实现最先进的语音识别性能。...研究人员表示,SpecAugment方法不需要额外的数据,可以在不适应底层语言模型的情况下使用。 谷歌AI研究人员Daniel S....Park和William Chan表示,“一个意想不到的结果是,即使没有语言模型的帮助,使用SpecAugment器训练的模型也比之前所有的方法表现得更好。...虽然我们的网络仍然从添加语言模型中获益,但我们的结果表明了训练网络在没有语言模型帮助下可用于实际目的的可能性。” ?...SpecAugment部分通过将视觉分析数据增强应用于频谱图,语音的视觉表示来工作。

    94770

    神兵利器 - 在没有任何权限的情况下破解任何 Microsoft Windows 用户密码

    最大的问题与缺乏执行此类操作所需的权限有关。 实际上,通过访客帐户(Microsoft Windows 上最受限制的帐户),您可以破解任何可用本地用户的密码。...PoC 测试场景(使用访客账户) 在 Windows 10 上测试 安装和配置新更新的 Windows 10 虚拟机或物理机。...在我的情况下,完整的 Windows 版本是:1909 (OS Build 18363.778) 以管理员身份登录并让我们创建两个不同的帐户:一个管理员和一个普通用户。两个用户都是本地用户。 /!...默认情况下,域名是%USERDOMAIN%env var 指定的值。...此时,对管理员帐户(如果启用)的最佳保护是设置一个非常复杂的密码。

    1.7K30

    在没有训练数据的情况下通过领域知识利用弱监督方法生成NLP大型标记数据集

    在现实世界中开发机器学习(ML)模型的主要瓶颈之一是需要大量手动标记的训练数据。例如,Imagenet数据集由超过1400万手动标记的各种现实的图像组成。...每个标签函数都独立运行以标记每行数据。在二元分类问题的情况下,标签为0(不存在标签)或1(标签的存在)或-1(信息不足,不标记)。...从上图也能够看到没有单标签模型(LM)框架始终优于其他框架,这表明我们必须在数据集中尝试不同的LMS才能选择最佳的LMS。...这里的正样品和负样品之间的边缘差值是一个超参数。 5、所有样本上的置信度正则化::上述整个方法只有在置信度(预测概率)是正确的,而错误标记的样本置信度很低的情况下才有效。...在两步弱监督方法中结合这些框架,可以在不收集大量手动标记训练数据集的情况下实现与全监督ML模型相媲美的准确性! 引用: Want To Reduce Labeling Cost?

    1.3K30

    在没有技术术语的情况下介绍Adaptive、GBDT、XGboosting等提升算法的原理简介

    假设你正在准备SAT考试,考试分为四个部分:阅读、写作、数学1(没有计算器)、数学2(没有计算器)。为了简单起见,假设每个部分有15个问题需要回答,总共60个问题。...但通常我们将max_depth限制在6到8之间,以避免过拟合。Gradientboost不使用树桩,因为它没有使用树来检测困难的样本。它构建树来最小化残差。...这也是最后一棵树的精度如何影响森林中下一棵树的精度。 为什么我们还需要XGboost? XGboost是专门为大型数据集设计的,因为它非常快。它使用了很多优化和正则化技术这超出了我想讲的范围。...当面对大型数据集时,这个过程可能非常耗时。 因此,XGboost又向前推进了一步。它没有使用预估器作为树节点。它构建树来将残差进行分组。就像我之前提到的,相似的样本会有相似的残值。...然而,当我们有一个合理数量的样本,比如几千个,Gradientboost实际上是更健壮的。所以在一些小的数据集的时候我们可以首先使用Gradientboost。

    88910

    怎么在没有专业UI的情况下设计出一个美观的工业组态界面?

    在目前的工控行业里面,软硬件发展的都比较成熟,工程师们能够独立完成功能,然而在现在竞争日益激烈的情况下,无论是触摸屏还是PC机,因为直观的展示了项目的全貌,软件界面显得愈发重要。...那么怎么在没有专业UI的情况下设计出一个美观的界面呢? 下面分享一下我的设计思路,希望对大家有所帮助。在我看来,组态界面的设计包含:框架、颜色、页面、字体、图标、图形这几个部分。...以我的经验来看,当采用工控显示器1920*1080的分辨率时,采用上下结构时,上部尺寸保持在105较好,按钮切换这部分尺寸在60左右,剩余主体窗口的尺寸为975左右。...当采用1680*1050分辨率时,采用上下结构时,上部尺寸保持在100,用户切换尺寸在60左右,剩余主体窗口的尺寸为950左右。...3) 将复制好的图标图层选中,之后再选中图标,点击“编辑”里面的“填充”,将其由黑色修改为白色 4) 之后新建图层,将图层填充为需要的颜色,此处需要蓝色 5) 再将有颜色的图层拖拽到图标图层下方,并将该图标导出为需要的尺寸格式

    1K10

    尽量减少网站域名在没有启用 CDN 情况下的各种检测、扫描、测速等操作

    这个原理其实很简单,就是通过获取你的域名解析记录来侧面获取到你的真是 IP,有不少的第三方代理就可以扫描你的域名来获取到这些数据,不说是百分百的准确吧,至少有 80%的概率可以的,通过明月的分析,这些数据大部分依赖于平时网上各种的所谓...SEO 分析平台、互换友链平台等等,甚至不少的测速平台的数据都会被利用到,像有些所谓的安全检查扫描一类的也会获取到这里数据。...url=http://www.yourdomain.com 其中绿色部分替换为你要查询的域名即可,以www.baidu.com为例如下图: ?...这几乎是一种没有任何成本和技术门槛的手法就可以轻松获取到服务器真实的 IP 了,这也再次说明了给自己的站点加个 CDN 来隐藏真实 IP 的重要性,甚至可以说在没有 CDN 的情况下,尽量的不要去检测自己域名的速度...、SEO 信息查询等等操作,至于那些所谓的交换友链、自动外链的所谓 SEO 插件就更要远离了,基本上明月碰到的没有几个是正常的,总之各位是要小心谨慎了!

    1.1K20

    这136页PDF章章经典,没有学不会的“EXCEL数据透视表”!

    上次我已经为大家整理了97页的《python自动化办公文章》,反响甚好(下面这张图是很这篇文章的下载量,还不包括私下给别人的,到现在下载量肯定更高),得到了大家的一致认可。...我又来为大家送福利了。这次为大家送上了绝对是一篇大作,我可是花了好几周时间,精心整理的。到底是什么呢?没错,就是136页《EXCEL数据透视表大全》,关注本公众号,文末有获取该文档的说明。...为啥要学习《数据透视表》? 如果你是转行数据分析,或者说是从事数据分析工作的朋友,大多数人可能都会使用到Excel,那么也就必定会使用到数据透视表。...Excel可以说是转行数据分析必备的最基础的技能,因此我们有必要学好它。至少你学好了Excel,还有可能找到一个工作。...数据透视表是 Excel 中一个强大的数据处理分析工具,通过数据透视表可以快速分类汇总、比较大量的数据,并且可以根据用户的业务需求,快速变换统计分析维度,来查看统计结果,往往这些操作只需要利用鼠标进行拖曳就可以实现

    40860
    领券