首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在现有模型上设计迁移

是指在机器学习领域中,将已经训练好的模型应用于新的任务或领域。这种方法可以节省大量的时间和计算资源,因为我们可以利用已有模型的知识和参数来加速新任务的训练过程。

迁移学习的主要优势在于:

  1. 加速训练过程:通过利用已有模型的参数和特征提取能力,可以减少新任务的训练时间和计算资源消耗。
  2. 提升性能:已有模型通常在大规模数据集上进行了充分的训练,具有较强的泛化能力和良好的特征提取能力,可以帮助新任务取得更好的性能。
  3. 解决数据不足问题:在某些情况下,新任务的数据集可能非常小,不足以支持一个独立的模型进行训练。通过迁移学习,我们可以利用已有模型的知识来填补数据不足的问题。
  4. 适应不同领域:已有模型通常在某个特定领域或任务上进行了训练,但我们可以通过迁移学习将其应用于其他领域或任务,从而实现知识的跨领域迁移。

迁移学习在各个领域都有广泛的应用场景,例如:

  1. 图像分类:可以利用在大规模图像数据集上训练的模型,将其迁移到新的图像分类任务中,如人脸识别、物体检测等。
  2. 自然语言处理:可以利用在大规模文本数据集上训练的模型,将其迁移到新的文本分类、情感分析等任务中。
  3. 语音识别:可以利用在大规模语音数据集上训练的模型,将其迁移到新的语音识别任务中,如语音指令识别、语音转文字等。

腾讯云提供了一系列与迁移学习相关的产品和服务,包括:

  1. 腾讯云机器学习平台(https://cloud.tencent.com/product/tensorflow):提供了强大的机器学习工具和资源,支持模型训练、迁移学习等功能。
  2. 腾讯云图像识别API(https://cloud.tencent.com/product/imagerecognition):提供了图像分类、人脸识别等功能,可以用于迁移学习中的图像任务。
  3. 腾讯云自然语言处理API(https://cloud.tencent.com/product/nlp):提供了文本分类、情感分析等功能,可以用于迁移学习中的自然语言处理任务。

通过利用腾讯云的相关产品和服务,开发者可以更加方便地进行迁移学习的实践和应用。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • “北大-鹏城-腾讯”新视角:从势能的角度探讨模型的可迁移性-ICCV2023开源

    随着大规模数据集预训练模型的广泛应用,迁移学习已成为计算机视觉任务中的关键技术。但是,从大量的预训练模型库中为特定下游任务选择最优的预训练模型仍然是一个挑战。现有的方法主要依赖于编码的静态特征与任务标签之间的统计相关性来测量预训练模型的可迁移性,但它们忽略了微调过程中潜在的表示动力学的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们从潜在能量的角度提出了一种新颖的方法——PED,来解决这些挑战。我们将迁移学习动力视为降低系统潜在能量的过程,并直接对影响微调动力学的相互作用力进行物理学建模。通过在物理驱动模型中捕获动态表示的运动来降低潜在能量,我们可以获得增强和更稳定的观测结果来估计可迁移性。在10个下游任务和12个自监督模型上的实验结果表明,我们的方法可以顺利集成到现有的优秀技术中,增强它们的性能,这揭示了它在模型选择任务中的有效性和发掘迁移学习机制的潜力。我们的代码将在https://github.com/lixiaotong97/PED上开源。

    04

    【综述专栏】大型视觉语言模型攻击综述:资源、进展与未来趋势!

    近年来,随着大型模型的显著发展,大型视觉-语言模型(LVLMs)在各种多模态理解和推理任务中展示了卓越的能力。相比于传统的大型语言模型(LLMs),由于更接近多资源的现实世界应用和多模态处理的复杂性,LVLMs 展示了巨大的潜力和挑战。然而,LVLMs 的脆弱性相对较少被探索,在日常使用中可能存在潜在的安全风险。在本文中,我们对现有的各种 LVLM 攻击形式进行了全面的回顾。具体来说,我们首先介绍了针对 LVLMs 攻击的背景,包括攻击的初步知识、攻击的挑战和攻击资源。然后,我们系统地回顾了 LVLM 攻击方法的发展,如操纵模型输出的对抗攻击,利用模型漏洞进行未授权操作的越狱攻击,设计提示类型和模式的提示注入攻击,以及影响模型训练的数据投毒攻击。最后,我们讨论了未来有前景的研究方向。我们相信,我们的调查为 LVLM 脆弱性的现状提供了洞见,激励更多研究人员探索和缓解 LVLM 开发中的潜在安全问题。最新的 LVLM 攻击论文会在 https://github.com/liudaizong/Awesome-LVLM-Attack 持续收集。

    01

    Advanced Science | 多模态蛋白表征方法及其迁移性量化

    5月30日,中国科学院深圳先进技术研究院数字所殷鹏团队在Advanced Science在线发表了最新研究成果,题为“A Multimodal Protein Representation Framework for Quantifying Transferability Across Biochemical Downstream Tasks”。该工作提出了一种多模态蛋白质表征方法,通过融合多种蛋白质模态,包括序列、结构和基因本体(GO)信息来实现对蛋白的高效表征。同时,提出了一种基于最优传输的特征空间表示度量,用于量化从预训练的多模态表征到下游任务的动态迁移性。这种度量可以有效地捕捉任务间的分布差异,并预测任务间的适应性。这项研究的成果有助于更好地理解蛋白质的性质和功能,为计算生物学领域的研究提供了新的工具和方法。助理研究员胡帆博士为论文的第一作者,数字所硕士研究生胡奕绅、张维鸿为共同一作。潘毅教授为论文的共同作者,殷鹏副研究员为论文的通讯作者。

    02

    当前深度神经网络模型压缩和加速方法速览

    导读: 本文全面概述了深度神经网络的压缩方法,主要可分为参数修剪与共享、低秩分解、迁移/压缩卷积滤波器和知识精炼,本论文对每一类方法的性能、相关应用、优势和缺陷等进行独到的分析。机器之心简要介绍了该论文,更详细的内容请查看原论文。 大型神经网络具有大量的层级与结点,因此考虑如何减少它们所需要的内存与计算量就显得极为重要,特别是对于在线学习和增量学习等实时应用。此外,近来智能可穿戴设备的流行也为研究员提供了在资源(内存、CPU、能耗和带宽等)有限的便携式设备上部署深度学习应用提供了机会。高效的深度学习方法可以

    06

    J. Med. Chem. | RELATION: 一种基于靶标结构的深度学习全新药物设计模型

    本文介绍一篇来自浙江大学侯廷军教授课题组、中南大学曹东升教授课题组、华东理工大学李洪林教授课题组联合发表的论文。该论文提出了一种能够在分子生成过程中考虑到蛋白-配体相互作用的深度学习生成模型RELATION,该模型适用于基于靶标结构的全新药物设计。RELATION模型同时使用百万量级的分子库以及蛋白-配体集合数据对变分自编码器进行训练,在引入双向迁移学习后,隐藏层的采样能够同时兼顾生成分子的骨架片段的新颖性以及对靶标蛋白的亲和性。RELATION模型还提供了药效团约束生成以及贝叶斯优化(BO)采样等模块,可供用户定制化生成药效团匹配度更高以及对靶标的对接打分表现更好的分子。

    05

    ODL应用案例之云和网络功能虚拟化应用案例

    概述 近年来,大公司和中小企业已经认识到云计算技术是提高自己的竞争力的核心技术。混合云和公共云虽然具备了提高业务灵活性并降低总成本的潜力,但它们对于传统网络的需求依旧非常显著。云计算需要极其高水平的动态计算和自动化技术来解决快速变化的需求,当云计算在自动化计算和存储方向已经取得了重大进展的同时,网络自动化仍然因为更复杂而难以实现,从而阻碍了大多数云服务的部署。 通信服务提供商(CSP)也正利用云技术来增强其庞大的网络基础设施的可管理性和成本效益,同时提高了服务灵活性。许多世界领先的电信和有线电视运营商在网

    07
    领券