随着这几年大数据应用的兴起,很多企业开始意识到了数据分析对于行业和企业的重要性,零售、电商、制造业等行业大规模的进行大数据的转型和分析。零售行业通过用户的购买数据分析,进行精准的产品推送和产品结构的调整,做到销售的精准化。制造业提出了工业4.0的概念,通过对整体制造过程的数据采集,呈现,分析,以仪表盘数据的形式来监控整体的制造的进行,从而可以更加高效的进行产品的生产。
导语:6月23日,腾讯游戏数据分析系统负责人周东祥在 "GIAC全球互联网架构大会" 的分享了主题为《大数据分析系统在游戏领域的迭代与实践》的内容,具体的分享视频和PPT可以在大会官网下载和观看。这里主要以陈述的角度把个人的分享的主要观点和概要内容分享给大家,欢迎大家来交流,指正。 给大家说下,我今天分享主要内容,分为三个主要内容: 1. 分析系统在游戏分析的背景和要解决的问题 2. 大数据分析引擎 在游戏领域的迭代与实践 3. 分享的总结和未来规划 以数据分析角度来讲,这个是当时大数据技术最
想成为 Facebook 水准数据分析师,有哪些必备的核心技能?经常有小伙伴在各种渠道问我,数据分析师怎么入门?应该读什么书?如何能成为被大公司认可的数据分析师? 经常有小伙伴在各种渠道问我,数据分析
经常有小伙伴在各种渠道问我,数据分析师怎么入门?应该读什么书?如何能成为被大公司认可的数据分析师? Facebook 数据分析师邹昕曾分享过这样一张“数据分析核心技能地图”: 如果按照图上的标准,你正
大数据主要研究计算机科学和大数据处理技术等相关的知识和技能,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)出发,对实际问题进行分析和解决。
大数据行业在迅速的发展,几乎每天都会出现新的技术和方法。因此,想要跟上这个行业的步伐是有挑战性的。想要玩出数据的商业价值,让数据变成生产力,就需要读书了。俗话说:“读书如登山,每向上一步都又是一番风景,数据分析的成长之路也如登山一样,要想成为数据分析师,读书是必不可少的。
在实时数据分析中,低延迟的数据对于选择和更新模型的特征和权重以获得更精确的结果非常有用。
大赛简介 为积极探索科技主导的万众创新,上海交通大学网络信息中心作为“数字大学”和校园信息化建设的核心部门,携手EMC卓越研发集团,在校学指委、后勤集团等部门的支持下,将于2015年4月-5月举办“EMC杯智慧校园开放数据大赛”。比赛报名请登录Kesci.com,初赛形式为在线提交PPT格式的分析报告与分析程序,报名与提交截止日期为5月13日。将有10只队伍入围5月20日于上海交大展开的决赛。 开放数据大赛将积极探索打通校园和社会、打通各专业隔阂,在实践中挖掘数据的价值,探索大数据人才培养的新模式。大赛将
很多同学在工作和面试时都遇到一个要求:数据的分析要给出“可执行”的建议。“可执行”这仨字难倒了好多人。怎么才算可执行?我要给销售一个可执行的建议,所以我要自己去卖几百万的货?我要给内容运营一个可执行的建议,所以我要建议她在标题里“震惊!”“沸腾!”一下?我平时就会写:“活跃率低了,要搞高”,该咋办呀!以上种种问题,今天系统解答一下。
导读:大家好,今天主要分享数据分析平台的平台演进以及我们在上面沉淀的一些数据分析方法是如何应用的。
导读:吾日三省吾身,过年胖了吗?情人节过了吗?发际线还好吗?别想这么多啦,程序员和数据科学家的世界里,只有Python值得你费脑子!今天为大家准备了10本数据分析相关好书,助你早日成为Python大神!
本地版:https://bitbucket.org/Luisa_amaral/bart
因为我实习的工作是游戏后端开发,所以难免会遇到游戏领域的一些专业知识,就比如游戏数据分析。因为之前从未接触过游戏这一块,所以很多东西得去学,在之前老大给我一个任务:统计一下XX款游戏近三个月的留存情况、Guide分布、付费情况,当时接到任务脑袋里是蒙的,留存??Guide分布??付费的指标有哪些??这些我都不知道,这些都属于游戏数据分析的内容,本文就记录一下我近期学习的游戏数据分析吧。
来自:数据观 https://www.shujuguan.cn/?from=qcloud 《订单分析 挖掘潜在商机》要开课啦!完全免费!完全免费!完全免费! 据说,数据分析会为销售管理带来巨大的价值
随着数字化的发展,实证单位和企业需要处理分析的数据量呈指数级增长,传统的数据分析工具已不能满足一些企业的需求,越来越多的企业转而寻求BI工具的帮助。现在市面上有非常多的BI工具,质量也参差不齐,笔者特此盘点了现在市面上6款常见的BI工具,以供有需要的朋友参考。(排名不分先后)
可视化之于数据分析流程中的重要意义不言而喻,它往往是体现数据分析报告的决定性一环,图表做的好、涨薪少不了。本文针对在完成数据分析过程中,介绍个人习惯运用的那些数据可视化工具。
做一个商城小程序,产品展示是必备的,所有的商品都会在产品展示功能页面中,向用户展示,让用户进一步了解商品,方便用户查看产品信息,增加用户下单率。
有读者问我,看到现在大厂都在招数据分析师,薪资也非常有吸引力,我会用 SQL 和 Excel,还会一点 Python,能不能去应聘?
允中 发自 凹非寺 量子位 编辑 | 公众号 QbitAI 10月23日数据湖高峰论坛上,阿里巴巴集团副总裁、阿里云智能数据库产品事业部负责人、达摩院数据库与存储实验室负责人李飞飞表示:“云原生作为云计算领域的关键技术与基础创新,正在加速数据分析全面进入数据库大数据一体化时代”。 △ 阿里巴巴集团副总裁、阿里云智能数据库产品事业部负责人李飞飞 他表示,随着数字化转型进程深入推进,企业的数据存储、处理、增长速度发生了巨大的变化,传统数据分析系统在成本、规模、数据多样性等方面面临很大的挑战。云计算的发展正在加
在本文中,我们将深入探讨数据分析的核心概念和技术,以及如何使用Python进行数据分析和可视化。我们将通过一个实际的案例研究,演示如何使用数据分析工具来解析销售趋势,从而为业务决策提供有力的支持。
原作者 Karthe 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 数据分析是新的职业潮流 我机缘巧合进入了数据科学行业,一开始这并不是我的梦想。在这之前,我是一个大型机程序员。很长一段时间,我唯一目标是参加一个不错的MBA课程。 直到 2013 年,我已经在软件服务行业工作了 9 年。我的工作稳定下来,看不到有太多发展空间。直到我了解到即将到来的新潮流——“数据分析”。 最开始进入分析行业时感觉困难重重。首先,当时公司内部没有太多的分析性策略。其次,随着数据分析逐渐发展成
大数据与人工智能时代,掌握Python基础后,我们可以选择数据分析方向、人工智能方向、全栈开发方向... 如果想要追赶 Python 的热潮,应该如何学习呢?除了自学之外,多数人都会选择在线课程作为辅
人力资源的数据分析是一个系统化的学习过程,除了需要掌握基础数据分析知识外,还需要掌握EXCEL的技能和人力资源的专业能力,为了帮助大家更好的学习数据分析,我帮大家梳理了一下学习的知识,需要学习哪些内容,如何循序渐进的来学习数据分析。
OLTP 是 Online Transaction Processing 的简称,是一个联机事务处理系统,主要目标是数据处理而不是数据分析。OLTP 系统的主要关注点是记录事务当前的更新,插入以及删除操作。OLTP 的查询比较简短,因此需要比较少的处理时间以及比较少的空间。
其实就是难者不会,会者不难 ,毕竟每个人要成为一个能做这些举手之劳分析的工程师,就需要至少一年的努力学习,为大家的学习和付出买单是理所当然的。
在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据在高校应用的例子,来为大家说明白—数据挖掘、
作者 CDA 数据分析师 前言 2017年7月29日,由CDA数据分析师主办,以“跨界互联 数据未来”为主题的CDAS 2017第四届中国数据分析师行业峰会在北京中国大饭店隆重举行。 7月29日当天,除了引人眼球的主会场以外,当天同步开放11个分论坛,我们将逐一推送每个分论坛的盛况,以及演讲嘉宾速记稿整理,给每一个CDA成员奉上干货。 CDAS 2017中国数据分析师行业峰会下午的大数据与金融分论坛中,来自IBM、诸葛io、民生银行等六位专家与教授,分享了大数据在金融领域的实践和应用 人工智能助
📌 在今天的这篇博客中,猫头虎博主将与大家深入探讨Python数据分析在职场中的重要性,以及如何学习和应用Python进行数据分析。让我们一起探索“Python数据分析”这一热搜词条,看看作为一个程序员,你是否真的掌握了这一关键技能!
随着大数据的爆红,数据分析师这个职位也得到了越来越多的关注,千千万万懂些大数据技术的少年们都渴望成为高大上的“大数据科学家”,可是,你们真的准备好了吗? 1、最早的数据分析可能就报表
在几十年前,很多企业需要处理分析的数据量还比较少,大部分时候用Excel就可以解决,企业领导者依靠自己丰富的经验也可以做出一些重要的决策。但是数字化时代的到来让企业的数据量成倍的增长,通过Excel无法轻易地分析企业内各种各样的数据,在这样的背景下就出现了BI软件,以帮助企业充分利用积累的大量数据,帮助企业做出理性决策,降低风险,减少损失。现在市面上有各式各样的BI软件,笔者在此列出了以下5款主流的BI软件,以供大家参考。
这样理解,就简单多啦! 导读:在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据在高校应用的例
数据分析的概念对于大家来说早已司空见惯,数据分析技能目前也已成为求职者和工作场所人员的一个亮点。对于面对自身累积的庞大财务数据,业务数据和运营数据,流量数据及其他数据资产的公司,公司如何利用大数据并进行大数据分析?我们从以下几个方面来了解一下。
在某种程度上,这是在线教育企业的挑战也是一个新机遇,作为以互联网为核心的在线职业教育平台,嗅到这个增长机会后,迅速反应,在各平台疯狂进行广告轰炸,比如手机APP的开屏宣传、各大搜索引擎的信息流广告等,无处不在的都能看到在线教育的身影。
如今,信息技术发展进入了一个新的时代,海量数据呈现几何增长趋势。面向数据分析市场的新产品、新技术、新服务、新业态正在不断涌现,大数据技术也将渗透到每个复杂计算的应用领域。同时,用户对数据分析的实时性和平台响应的时效性要求也越来越高,越来越多的企业通过搭建数据分析平台,进一步推动企业管理走向数字化和智能化。
自从做公众号以来,一直都有学生问我 现在数据分析那么火热,现在入行迟吗? 会不会刚等我都出来了,行业对数据分析师的需求也接近饱和了? 我的答案是: 不会。 “数据分析的人才需求每年都在增长,而每年的高
1、最早的数据分析可能就报表 目前很多数据分析后的结果,展示的形式很多,有各种图形以及报表,最早的应该是简单的几条数据,然后搞个web页面,展示一下数据。早期可能数据量也不大,随便搞个数据库,然后SQ
麦肯锡在 2012 年这样描述“大数据”时代的到来:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来”。 这一论断,如今已经成为现实。例如,购物时,消费者会看到来自平台的个性化推荐;训练场上,运动员利用数据来监测和分析动作,不断改进运动技术和战术;工厂里,工程人员通过对生产数据的采集、分析,不断优化生产工艺及流程……在许多行业,数据已经成为重要的生产要素,甚至在某些行业里,数据成为企业最核心的生产要素。 与此同时
1、Python学习,语言的学习,真正掌握语言的方式,是交流与实践,所以,这三本书,是由浅入深的步骤。大家在学习过程中,可以到群里面去进行交流沟通。群号:427711751。 《简明Python教程》
嘉宾介绍: 李永,大数据厂商联盟理事长,20多年从事数据分析实践、10多年电信公司管理、10多年数据仓库BI经验;首批受聘广东省电子政务大数据专家;长期游历MIT、Stanford、CMU从事大数据技
美国企业与高等教育论坛(BHEF)与普华永道(PWC)近期发布重要报告,数据科学与数据分析的人才需求每年都在增长,而每年的高校毕业生数量远远无法满足行业需求。 就连NBA在选拔球员时也离不开数据分析,比如76人队就拥有属于自己的数据分析部门。比如在选拔新队员恩比德和西蒙斯时,数据分析的作用功不可没。 近年来,几乎所有的企业都将数据提升到企业的战略发展中,期待其在企业中发挥关键性的作用,因此数据人才也开始被争抢:市场分析师、数据咨询师、金融分析师、数据产品经理、数据运营……数据岗位的薪资水涨船高,成为目前最有
欢迎来到脑机接口综合性开源软件平台MetaBCI的发布会现场,我是来自天津大学的许敏鹏。
大数据是推动创新型国家建设的重要战略资源,大数据对经济发展、社会治理、国家管理、人民生活都产生了重大影响。
现在,数据分析的力量正深刻影响着商业格局。大数据对公司的影响非常广泛,涉及市场营销、风险、运营等,高级管理层能够以不同的方式参与其中。
大数据时代,利用数据进行精细化运营才是商业的长久生存之道。作为一线运营人员,学会商铺数据分析与租户辅导方法,不仅可以最大化挖掘数据背后潜在的商业价值,而且可以提升自己的工作技能,获得更大的发展平台。
最近常听到的一个观点是,未来十年内 AI 可能会取代 50% 的工作岗位,但早 AI 一步取代你的,可能是邻桌懂数据分析的同事。
数字经济蓬勃而起,能源行业数字化也正在有序开展,通过数字技术,构建更高效、更清洁、更经济、更安全的现代能源体系。
过去三十年,许多公司增设新的管理层以应对变幻莫测的商业环境。上世纪80年代中期,对于多数公司而言,首席财务官还是个陌生的职位。然而,伴随着价值管理以及企业与投资人关系日趋透明,越来越多的公司有了首席财务官。随着品牌建设与客户管理对公司的重要性与日俱增,首席市场官就变得越来越重要,此外,还有不少公司设置了首席战略官,帮助公司应对来自市场的挑战。 现在,数据分析的力量正深刻影响着商业格局。抓住数据发展带来的机遇,增加利润,提升生产力甚至打造全新的业务单元,成为了企业的新需求——这不仅需要信息基础设施领域的人
【每周一本书】之《游戏数据分析实战》:盛大游戏数据分析专家亲历16年的实战经验分享
领取专属 10元无门槛券
手把手带您无忧上云