首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)

最重要的一个特点是其N维数组对象ndarray,它是一系列同类型数据的集合,以0下标为开始进行集合中元素的索引。...ndarray对象的内容可以通过索引或切片来访问和修改,与Python中list的切片操作一样。...【示例】一维数组切片和索引的使用 # 创建一维数组 a = np.arange(10) print(a) # 索引访问:1.正索引访问,从0开始到当前长度减一 print('正索引为0的元素:', a[...]) # 从开始到结尾 print(a[3:5]) # 从索引3开始到索引4结束[star:stop) print(a[1:7:2]) # 从索引1开始到6结束,步长为2 print(a[::-1...# 获取第二行,第三列的元素 print('-'*15) # 切片的使用 [对行进行切片, 对列进行切片] [star:stop:step, star:stop:step] print(a[:, :

8.8K11

NumPy基础

参考链接: Python中的numpy.log1p 文章目录  一、创建数组二、数组操作类型1. 数组属性2. 数组索引:获取单个元素3. 切片4. 数组的变形5....数组拼接和分裂    三、数组计算:通用函数四、聚合五、数组计算:广播六、比较、掩码和布尔逻辑1. 比较2. 操作布尔数组3....] #从索引5开始到索引0结束,间隔1倒序 # 2.多维子数组 x2 = np.array([[12, 5, 2, 4], [7, 6, 8, 8], [1, 6, 7, 7]]) x2[:2, :3]...(2, x, out=z[::2]) 聚合  reduce方法对给定元素和操作重复执行至得到单个结果(np.sum, np.prod, np.cumsum, np.cumprod也可以实现reduce功能...,内含3个重复值 # at()函数在这里对给定的操作,给定的索引,给定的值执行就地操作 # 类似方法:reduceat()函数 八、数组的排序  快速排序  # 算法复杂度O[NlogN] # 不修改原始数组的基础上返回一个排好序的数组

1.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python Numpy基础教程

    在NumPy中,维度称为轴,轴的数目为rank。...ndarray的切片语法和Python list类似,对于高维对象,花样比较多,可以在一个或者多个轴进行切片,也可以跟整数索引混合使用(降低维度)。...:快速的元素级数组函数 通用函数(ufunc)是一种对ndarray中的数据执行元素级运算的函数,可将其分为一元和二元进行说明。...数组运算 基础运算 在Numpy中,可以利用ndarray对整块数据执行一些数学运算,语法和普通的标量元素之间的运算一样。其中,数组与标量的运算会将标量作用于各个数组元素。...: where:返回输入数组中满足给定条件的元素的索引 .argmax() 和 numpy.argmin()函数分别沿给定轴返回最大和最小元素的索引 nonzero() 函数返回输入数组中非零元素的索引

    80930

    Python数据分析之numpy数组全解析

    中数组的数据类型 4 numpy中数组的形状 5 索引与切片 5.1 按索引取值 5.2 bool索引 6 numpy中赋值、视图、深复制 什么是numpy numpy是一个在Python中做科学计算的基础库...(3)使用特殊的库函数,特殊方法 基本方法:np.array()基本方法是通过给numpy提供的一些函数中传入可迭代对象来创建数组,这种方法通常是在已知所有元素的情况下使用。...() >>> b array([1., 1., 1., 1., 1., 1.]) >>> b.shape (6,) 索引与切片 对数据使用时,不可避免要进行索引和切片,numpy在这一方面不可谓不强大...numpy数组中所有的索引都是从0开始的,我们可以根据索引来精确取数据。...、浅复制) numpy中允许不同数组间共享数据,这种机制在numpy中称为视图,对numpy数组的切片和浅复制都是通过视图实现的。

    1.4K20

    NumPy 1.26 中文文档(五)

    与 Python 中的其他容器对象一样,可以通过对数组进行索引或切片(例如使用N个整数)以及通过ndarray的方法和属性来访问和修改数组的内容。...数组索引 数组可以使用扩展的 Python 切片语法array[selection]进行索引。类似的语法也用于访问结构化数据类型中的字段。 另请参阅 数组索引。...数组索引 可以使用扩展的 Python 切片语法 array[selection] 对数组进行索引。类似的语法也用于访问结构化数据类型中的字段。 另请参见 数组索引。...ndarray.argpartition(kth[, axis, kind, order]) 返回对该数组进行分区的索引。...如果axis是整数,则对给定轴进行操作(对可以沿给定轴创建的每个 1 维子数组进行操作)。

    15510

    Python---numpy的初步认识

    different sized elements.)NumPy数组支持在大量数据上进行数学计算和其他类型的操作。...通常情况下,与Python自带的序列类型相比,NumPy数组上的操作执行更高效,代码量也更少。...()数组的索引和切片  一维数组切片  a = np.array([9,8,7,6,5,4])  a[1:4:2]==>array([8,6]) [起始编号:终止编号(不含):步长]  多维数组切片 ...(:)是切片方式,一组最多两个冒号(开始:结束(不包含):步长)  例如一个3维的数组要切片  arr[开始:结束(不包含):步长 , 开始:结束(不包含):步长, 开始:结束(不包含):步长 ]  最后一维的切片没冒号..., weights =[10, 5, 1]) : 对a第一各维度加权求平均,weights中为权重,注意要和a的第一维匹配  min(a) max(a) : 计算数组a的最小值和最大值  argmin(

    99740

    Python---numpy的初步认识

    different sized elements.)NumPy数组支持在大量数据上进行数学计算和其他类型的操作。...通常情况下,与Python自带的序列类型相比,NumPy数组上的操作执行更高效,代码量也更少。...()数组的索引和切片  一维数组切片  a = np.array([9,8,7,6,5,4])  a[1:4:2]==>array([8,6]) [起始编号:终止编号(不含):步长]  多维数组切片 ...(:)是切片方式,一组最多两个冒号(开始:结束(不包含):步长)  例如一个3维的数组要切片  arr[开始:结束(不包含):步长 , 开始:结束(不包含):步长, 开始:结束(不包含):步长 ]  最后一维的切片没冒号..., weights =[10, 5, 1]) : 对a第一各维度加权求平均,weights中为权重,注意要和a的第一维匹配  min(a) max(a) : 计算数组a的最小值和最大值  argmin(

    1.1K10

    如何为机器学习索引,切片,调整 NumPy 数组

    [11 22] 3.数组切片 文章到现在为止似乎还挺容易; 创建数组和建立索引感觉很熟悉。 现在我们来到数组切片的部分,这部分往往是初学者面对 Python 和 NumPy 时经常产生疑问的地方。...列表和 NumPy 数组等数据结构可以进行切片操作。意味着这些数据结构的子序列可以通过切片被索引和获取。...切片从“from”索引开始,并在“to”索引之前结束。(切片操作的范围包含起始项,但不包含结束项) data[from:to] 让我们通过一些例子来说明切片的用法。...[11 22 33 44 55] 数组的第一项可以通过指定从索引 0 开始到索引 1 结束的切片(即在‘ 1 ’之前结束)来获取。...[11] 我们也可以在切片中使用负数索引。例如,我们可以通过切片获得列表中的最后两项,将切片的起始位设为 -2 ,将结束位留空。这样,切片就从列表的倒数第二项开始,到列表最后结束。

    6.1K70

    Python:Numpy详解

    参考链接: Python中的numpy.amin NumPy Ndarray 对象  NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引...NumPy 切片和索引  ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。 ...ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。 ...  整数数组索引布尔索引花式索引  NumPy 广播(Broadcast)  广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行...当axis为1时,数组是加在右边(行数要相同)。  numpy.insert numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。

    3.6K00

    【数据分析 | Numpy】Numpy模块系列指南(一),从设计架构说起

    数值计算、线性代数、统计分析等通用函数 Universal Functions (ufunc) 快速的元素级数组函数,对数组中的元素逐个进行操作,支持矢量化运算。...数值计算、数学运算、逻辑运算等索引和切片 Indexing and Slicing 用于访问和修改数组中的元素,可以通过索引、切片和布尔掩码进行操作。...数据访问、数据修改、数据筛选等广播 Broadcasting 对不同形状的数组进行自动的元素级运算,使得不同尺寸的数组可以进行计算。...numpy.arange() 根据指定的开始值、结束值和步长创建一个一维数组。 numpy.linspace()在指定的开始值和结束值之间创建一个一维数组,可以指定数组的长度。...numpy.logspace()在指定的开始值和结束值之间以对数刻度创建一个一维数组。

    19000

    【数据分析 | Numpy】Numpy模块系列指南(一),从设计架构说起

    数值计算、线性代数、统计分析等 通用函数 Universal Functions (ufunc) 快速的元素级数组函数,对数组中的元素逐个进行操作,支持矢量化运算。...数值计算、数学运算、逻辑运算等 索引和切片 Indexing and Slicing 用于访问和修改数组中的元素,可以通过索引、切片和布尔掩码进行操作。...数据访问、数据修改、数据筛选等 广播 Broadcasting 对不同形状的数组进行自动的元素级运算,使得不同尺寸的数组可以进行计算。...numpy.arange() 根据指定的开始值、结束值和步长创建一个一维数组。 numpy.linspace() 在指定的开始值和结束值之间创建一个一维数组,可以指定数组的长度。...numpy.logspace() 在指定的开始值和结束值之间以对数刻度创建一个一维数组。 numpy.eye() 创建一个具有对角线为1的二维数组,其他位置为0。

    19110

    NumPy 笔记(超级全!收藏√)

    NumPy Ndarray 对象  NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。 ...dtypendarray 的数据类型 NumPy 切片和索引  ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。 ...NumPy 高级索引  NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。 ...numpy.char.split()  numpy.char.split() 通过指定分隔符对字符串进行分割,并返回数组。默认情况下,分隔符为空格。 ...指定算法沿着指定轴对数组进行分区 numpy.argmax() 和 numpy.argmin()  numpy.argmax() 和 numpy.argmin()函数分别沿给定轴返回最大和最小元素的索引

    4.6K30

    Python 数据处理:NumPy库

    ndarray的数据类型 2.3 NumPy数组的运算 2.4 基本的索引和切片 2.5 切片索引 2.6 布尔型索引 2.7 花式索引 2.8 数组转置和轴对换 3.通用函数:快速的元素级数组函数...CPU用来执行程序的时间; Wall time:从计算开始到计算结束等待的时间。...print(arr2d[0,2]) 二维数组的索引方式,轴0作为行,轴1作为列: 在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据...通过将整数索引和切片混合,可以得到低维度的切片。...下图说明了要在三维数组各维度上广播的形状需求。 于是就有了一个非常普遍的问题(尤其是在通用算法中),即专门为了广播而添加一个长度为1的新轴。

    5.7K11

    Python-Numpy数组计算

    2、NumPy的主要功能:  ndarray,一个多维数组结构,高效且节省空间无需循环对整组数据进行快速运算的数学函数*读写磁盘数据的工具以及用于操作内存映射文件的工具*线性代数、随机数生成和傅里叶变换功能...五、NumPy:索引和切片  1、数组和标量之间的运算     a+1    a*3    1//a    a**0.5 2、同样大小数组之间的运算     a+b    a/b    a**b 3、数组的索引...,在切片数组上的修改会影响原数组。   ...答案:a[:,[1,3]]  八、NumPy:通用函数’  通用函数:能同时对数组中所有元素进行运算的函数  常见通用函数:  一元函数:abs, sqrt, exp, log, ceil,   numpy.sqrt...argmin 求最小值索引argmax 求最大值索引 十一、NumPy:随机数生成  随机数生成函数在np.random子包内 常用函数    rand 给定形状产生随机数组(0到1之间的数)randint

    2.4K40

    NumPy入个门吧

    NumPy 的数据类型需要统一,所以在进行大规模数学运算时它的执行效率会非常高。在做数据分析时,通常会对数值型和布尔型数据进行操作。...如果数组中既有文本又有数字就不能进行算数运算了,而且NumPy 也会将整个数组的数据类型变成 object。 学习 NumPy 最重要掌握向量化、广播和通用函数。这些内容本文都会讲到。...数字索引 访问 NumPy 数组元素的方法和 Python 访问列表元素的方法一样,都是使用“方括号”和“下标”进行访问。...NumPy 也支持切片的方式访问,切片需要传入一个起始索引(包含自身)和一个结束索引(不包含自身),两个索引之间用一个冒号分隔。...向量化和广播 向量化和广播都是在解决“遍历”问题。 比如你需要让数组的每个元素值增加1,你可以直接用数组+1,不需要手动一个个元素进行遍历。这叫向量化。 NumPy 会将标量值传播到数组的各个元素。

    13710

    图解NumPy,别告诉我你还看不懂!

    除了能对数值数据进行切片(slice)和切块(dice)之外,使用 NumPy 还能为处理和调试上述库中的高级实例带来极大便利。...当我开始学习这些工具时,我发现这样的抽象让我不必在循环中编写类似计算。此类抽象可以使我在更高层面上思考问题。 除了「加」,我们还可以进行如下操作: ?...索引 我们可以我们像对 python 列表进行切片一样,对 NumPy 数组进行任意的索引和切片: ? 聚合 NumPy 还提供聚合功能: ?...在更高级的实例中,你可能需要变换特定矩阵的维度。在机器学习应用中,经常会这样:某个模型对输入形状的要求与你的数据集不同。在这些情况下,NumPy 的 reshape() 方法就可以发挥作用了。...其中心数据结构被叫作 ndarray(N 维数组)不是没道理的。 ? 在很多情况下,处理一个新的维度只需在 NumPy 函数的参数中添加一个逗号: ?

    2.1K20

    【图解 NumPy】最形象的教程

    除了能对数值数据进行切片(slice)和切块(dice)之外,使用 NumPy 还能为处理和调试上述库中的高级实例带来极大便利。...当我开始学习这些工具时,我发现这样的抽象让我不必在循环中编写类似计算。此类抽象可以使我在更高层面上思考问题。 除了「加」,我们还可以进行如下操作: ?...索引 我们可以我们像对 python 列表进行切片一样,对 NumPy 数组进行任意的索引和切片: ? 聚合 NumPy 还提供聚合功能: ?...在更高级的实例中,你可能需要变换特定矩阵的维度。在机器学习应用中,经常会这样:某个模型对输入形状的要求与你的数据集不同。在这些情况下,NumPy 的 reshape() 方法就可以发挥作用了。...其中心数据结构被叫作 ndarray(N 维数组)不是没道理的。 ? 在很多情况下,处理一个新的维度只需在 NumPy 函数的参数中添加一个逗号: ?

    2.5K31

    图解NumPy,这是理解数组最形象的一份教程了

    当我开始学习这些工具时,我发现这样的抽象让我不必在循环中编写类似计算。此类抽象可以使我在更高层面上思考问题。 除了「加」,我们还可以进行如下操作: ?...03 索引 我们可以我们像对 python 列表进行切片一样,对 NumPy 数组进行任意的索引和切片: ? 04 聚合 NumPy 还提供聚合功能: ?...当需要对两个矩阵执行点乘运算并对齐它们共享的维度时,通常需要进行转置。NumPy 数组有一个方便的方法 T 来求得矩阵转置: ? 在更高级的实例中,你可能需要变换特定矩阵的维度。...在机器学习应用中,经常会这样:某个模型对输入形状的要求与你的数据集不同。在这些情况下,NumPy 的 reshape() 方法就可以发挥作用了。只需将矩阵所需的新维度赋值给它即可。...其中心数据结构被叫作 ndarray(N 维数组)不是没道理的。 ? 在很多情况下,处理一个新的维度只需在 NumPy 函数的参数中添加一个逗号: ?

    1.8K22

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券