首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

​python之筛选图像中是否存在黑白背景

python之筛选图像中是否存在黑白背景 紧接上篇文章的需求,需要进行功能增加 某些图片存在背景丢失问题,出现黑白背景现象,这种需要排查,同样交给了自动化处理。...RGB与十六进制颜色码转换 - 在线工具 (toolhelper.cn) 纯白色数值 纯黑色数值 在搜集的资料中,图像对比处理都是采用的黑白化(灰度图)图片进行取值,我用比较通俗的话来讲: 提取一张图片中所有像素点的值...第一,我是要找黑白背景,而他们都是由哈希值来求取,黑白在两个极值点,我无法准确判断是否为黑或者白; 第二,我使用cal_ccoeff_confidence方法求出来的值直接是负数,转手使用cal_rgb_confidence...3、取值只取前三,如果前三中,排名第一多的是纯黑或者纯白,那么我们判断该图片为背景缺失。...4、如果为(255,255,255)则记录该图片背景丢失,背景为白色 5、如果为(0,0,0)则记录该图片背景丢失,背景为黑色 在实际操作下来发现,白色并不一定完全是纯白,还有个范围差,于是我取值为三项都是大于

1.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在YUV图像上根据背景色实现OSD反色

    所谓的OSD其实就是在视频图像上叠加一些字符信息,比如时间,地点,通道号等, 在图像上叠加OSD通常有两种方式: 一种是在前端嵌入式设备上,在图像数据上叠加OSD, 这样客户端这边只需解码显示数据即可...对比度符号等,并把这些内容固化在ROM或Flash中,在显示缓存中仅存放对应的索引号,这样的“字典”结构可以大幅度减少显示缓存的需求。...先说下大体流程, 首先,播放SDK,通过网络模块接收前端视频流(经过压缩的数据),然后进行解压,得到一帧完整的YUV图像, 然后,我们在内存中创建一个设备无关的位图,并指定图像数据背景色为白色,字体为黑色...Y分量为1(背景亮,则osd字体为黑色,反之,若背景区为暗色,则设置osd字体像素点的Y为255) 这样扫描结束之后, 就实现了 pOSDYuvBuffer中的OSD字体颜色,根据背景色的反色。...然后将我们构造出来的临时图像 叠加到源图像上即可。 至于叠加操作,其实很简单。 同样扫描通明通道数据,如果发现不是透明色,直接将pOSDYuvBuffer中的YUV复制到 源图像相应位置即可。

    1.5K30

    使用Mask-RCNN在实例分割应用中克服过拟合

    在分类和定位中,我们感兴趣的是为图像中目标的分配类标签,并在目标周围绘制一个包围框。在这个任务中,要检测的目标数量是固定的。 物体检测不同于分类和定位,因为这里我们没有预先假设图像中物体的数量。...在本文中,我们将在一个很小的Pascal VOC数据集上训练一个实例分割模型,其中只有1349张图像用于训练,100张图像用于测试。这里的主要挑战是在不使用外部数据的情况下防止模型过拟合。...RPN为每个anchor分配一个类别:前景(正样本anchor)或背景(负样本anchor)。中性anchor是指不影响训练的anchor。 ?...在训练过程中,将 ground truth mask缩小,用预测的mask计算损失,在推理过程中,将生成的mask放大到ROI的边界框大小。...然后我们在剩下的epochs中训练从ResNet level 4和以上的层。这个训练方案也有助于最小化过拟合。我们可以不去微调第一层,因为我们可以重用模型从自然图像中提取特征的权重。

    1.3K20

    图像处理在工程中的应用

    传感器 图像处理在工程和科研中都具有广泛的应用,例如:图像处理是机器视觉的基础,能够提高人机交互的效率,扩宽机器人的使用范围;在科研方面,相关学者把图像处理与分子动力学相结合,实现了多晶材料、梯度结构等裂纹扩展路径的预测...,具体见深度学习在断裂力学中的应用,以此为契机,偷偷学习一波图像处理相关的技术,近期终于完成了相关程序的调试,还是很不错的,~ 程序主要的功能如下:1、通过程序控制摄像头进行手势图像的采集;2、对卷积网络进行训练...,得到最优模型参数;3、对采集到的手势进行判断,具体如下图所示: 附:后续需要学习的内容主要包括:1、把无线数据传输集成到系统内部;2、提高程序在复杂背景下识别的准确率。...附录:补充材料 1、图像抓取:安装OpenCV、Python PIL等库函数,实现图片的显示、保存、裁剪、合成以及滤波等功能,实验中采集的训练样本主要包含五类,每类200张,共1000张,图像的像素为440...其中,卷积神经网络主要由卷积层、激活函数、池化层、全连接层等几部分组成,具体如下所示: 卷积神经网络相对于传统的全连接网络,其网络参数变量大大减少,降低了由于参数过多引起的过拟合现象的发生,padding

    2.3K30

    收藏 | 使用Mask-RCNN在实例分割应用中克服过拟合

    在分类和定位中,我们感兴趣的是为图像中目标的分配类标签,并在目标周围绘制一个包围框。在这个任务中,要检测的目标数量是固定的。 物体检测不同于分类和定位,因为这里我们没有预先假设图像中物体的数量。...在本文中,我们将在一个很小的Pascal VOC数据集上训练一个实例分割模型,其中只有1349张图像用于训练,100张图像用于测试。这里的主要挑战是在不使用外部数据的情况下防止模型过拟合。...RPN为每个anchor分配一个类别:前景(正样本anchor)或背景(负样本anchor)。中性anchor是指不影响训练的anchor。 ?...在训练过程中,将 ground truth mask缩小,用预测的mask计算损失,在推理过程中,将生成的mask放大到ROI的边界框大小。...然后我们在剩下的epochs中训练从ResNet level 4和以上的层。这个训练方案也有助于最小化过拟合。我们可以不去微调第一层,因为我们可以重用模型从自然图像中提取特征的权重。

    64030

    Embedding 背景 发展 生成方法 在推荐中的应用

    Embedding背景与简介 在提到Embedding时,首先想到的是“向量化”,主要作用是将高维稀疏向量转化为稠密向量,从而方便下游模型处理。那什么是embedding呢?...在推荐系统与受众定位系统中,对用户进行embedding是重中之重。物品推荐中,可以把物品embedding化。...其中bert特别出色的,在许多nlp任务中取得优秀的效果,对bert的借用、改进,衍生出各种各样的方法。但是bert参数多,模型大,在轻量级业务可能有些过重。...在工程实践上其优越性也得到了证明(BERT 在多个 NLP 任务中也表现优异)。...5.3 user embedding [image.png] 从用户画像中筛选出一些在排序模型中重要性较大的特征来做向量化(比如通过特征重要度分析,发现标签(tag),一级分类(cat1),二级分类(cat2

    3.4K83

    在 Python 中对服装图像进行分类

    图像分类是一种机器学习任务,涉及识别图像中的对象或场景。这是一项具有挑战性的任务,但它在面部识别、物体检测和医学图像分析等现实世界中有许多应用。...在本文中,我们将讨论如何使用 Python 对服装图像进行分类。我们将使用Fashion-MNIST数据集,该数据集是60种不同服装的000,10张灰度图像的集合。...此数据集包含在 TensorFlow 库中。...此层将 28x28 图像展平为 784 维矢量。接下来的两层是密集层。这些层是完全连接的层,这意味着一层中的每个神经元都连接到下一层中的每个神经元。最后一层是softmax层。...经过 10 个时期,该模型已经学会了对服装图像进行分类,准确率约为 92%。 评估模型 现在模型已经训练完毕,我们可以在测试数据上对其进行评估。

    55151

    在 React 中缩放、裁剪和缩放图像

    在本文中,我们将了解如何使用 Cropper.js 在 React Web 应用中裁剪图像。尽管我们不会将这些图像上传到远程服务器进行存储,但是很容易就能完成这个任务。...React应用中的Cropper.js 如你所见,有一个带有源图像的交互式 canvas。操作的结果显示在“预览”框中,如果需要,可以将其保存。实际上,我们会将结果发送到远程服务器,但这取决于你。...在命令行中,执行以下操作: npx create-react-app image-crop-example 上面的命令将使用默认模板创建一个新项目。...在 constructor 方法中,我们定义了状态变量,该变量表示最终更改的图像。因为 Cropper.js 需要与 HTML 组件交互,所以需要定义一个引用变量来包含它。...源图像填充使用了该特定组件的用户定义的属性。目标图片使用的状态变量是我们在安装组件后定义的。

    6.3K40

    基于图像的单目三维网格重建

    结果表明,利用该渲染器可以在质量和数量上对三维无监督单视图重建进行显著的改进。 简介 从二维图像中理解和重建三维场景和结构是计算机视觉的基本目标之一。...但是在传统的图形通道中,渲染过程不是可微的。尤其是标准的网格渲染器中包含一个叫做光栅化的离散采样操作,该操作阻止了梯度流入网格顶点。...通过流动梯度到被遮挡的三角形来拟合目标图像的三维姿势 对于基于图像的形状拟合任务,证明了该方法能够使用考虑所有三角形概率贡献的聚集机制来处理遮挡;与其他可微渲染器相比,该方法有更平滑的效果,通过使用平滑渲染避免了局部极小值...(a)像素到三角形距离的定义;(b)-(d)不同σ生成的概率图 3.聚合函数:对于每个网格三角形fj,通过使用重心坐标插值顶点颜色,在图像平面上的像素Pi处定义其颜色映射Cj。...在梯度流方面的比较 由于OpenDR和NMR都在前向过程中使用标准图形渲染器,因此它们无法控制中间渲染过程,并且无法将梯度流到最终渲染图像中被遮挡的三角形中。

    1.2K10

    OpenCV | 二值图像分析的技巧都在这里

    轮廓的最大外接矩形 轮廓的最小外接圆 轮廓的最小外接三角形 轮廓拟合(支持拟合直线、椭圆、圆) 轮廓的凸包 轮廓层次信息提取 多边形逼近 计算欧拉数 函数介绍 OpenCV中提供大量轮廓分析函数,通过这些函数我们可以方便快捷的得到轮廓的各种有用属性信息...hierarchy, int mode, int method, Point offset = Point() ) 参数解释如下: image: 输入图像、八位单通道的,背景为黑色...::minEnclosingCircle( InputArray points, Point2f & center, float & radius ) // 计算最小外接三角形.../拟合三角形 double cv::minEnclosingTriangle( InputArray points, OutputArray triangle ) // 拟合直线 void...OpenCV寻找复杂背景下物体的轮廓 如何识别出轮廓准确的长和宽 OpenCV中几何形状识别与测量 OpenCV中BLOB特征提取与几何形状分类 OpenCV直线拟合检测 OpenCV中实现曲线与圆拟合

    1.8K30

    在图像的傅里叶变换中,什么是基本图像_傅立叶变换

    因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。...在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度,也就是图像的梯度大小。...模板运算与卷积定理 在时域内做模板运算,实际上就是对图像进行卷积。模板运算是图像处理一个很重要的处理过程,很多图像处理过程,比如增强/去噪(这两个分不清楚),边缘检测中普遍用到。...图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。...如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。

    1.4K10

    AI技术在图像水印处理中的应用

    在这里我们和大家分享一下业余期间在水印智能化处理上的一些实践和探索,希望可以帮助大家在更好地做到对他人图像版权保护的同时,也能更好地防止自己的图像被他人滥用。...我们大家在日常生活中如果下载和使用了带有水印的互联网图像,往往既不美观也可能会构成侵权。...能够一眼看穿各类水印的检测器 水印在图像中的视觉显著性很低,具有面积小,颜色浅,透明度高等特点,带水印图像与未带水印图像之间的差异往往很小,区分度较低。...有了这样一款水印检测器,我们就可以在海量图像中快速又准确地检测出带水印的图像。 ? 往前走一步:从检测到去除 如果只是利用AI来自动检测水印,是不是总感觉少了点什么?...为了尽可能提升网络输出无水印图像的质量,我们采用U-net结构替换了传统的编解码器结构,将输入信息添加到输出中,从而尽可能保留了图像的背景信息。

    1.3K10

    在Jupyter Notebook中显示AI生成的图像

    在本指南中,我将详细介绍如何构建一个基于用户输入的动态高效图像生成应用程序,并在Jupyter Notebook中显示图像输出。 什么是Jupyter Notebook?...创建应用程序 在您的项目目录终端中,运行此命令:jupyter notebook,以在http://localhost:8888上启动开发环境。...如果他们没有输入提示,则当用户在空白输入上按下回车键时,提供的提示将显示图像。...在generate_image函数代码块中,它接受一个条件性地接受用户输入的提示。它使用图像生成端点根据变量response中的文本提示创建原始图像。 属性n = 1指示模型一次只生成一张图像。...在Andela的白皮书“如何在云中部署Kubernetes的DevOps技能正在发展”中,了解如何寻找云和Kubernetes专家来加快项目交付。

    8010

    在Swift中创建可缩放的图像视图

    也许他们想放大、平移、掌握这些图像? 在本教程中,我们将建立一个可缩放、可平移的图像视图来实现这一功能。 计划 他们说,一张图片胜过千言万语--但它不一定要花上一千行代码!...medium.com/media/afad3… 在commonInit()中,我们将图像视图居中,并设置它的高度和宽度,而不是把它固定在父视图上。这样一来,滚动视图就会从图像视图中获得其内容大小。...这包括设置最小和最大的缩放级别,以及指定用户放大时使用的UIView(在我们的例子中,它将是图像视图)。让我们来设置滚动视图(为清晰起见,添加一些注释)。...我们将通过在我们的类中添加imageName字符串,并在字符串改变时更新UIImageView来实现。...让我们给我们的类添加另一个初始化器,这样我们就可以在代码中设置图像名称。 medium.com/media/074d4… 就这样了!现在我们可以像这样通过图片名称以编程方式初始化我们的视图了。

    5.7K20
    领券