LLM前言:推理加速、模型微调/对齐、开源LLM、Agent、多模态 推理加速 推理加速是AI技术中的关键环节,能让AI模型在实际应用中更智能、更高效。推理加速技术主要通过算法优化和硬件加速来实现。...硬件加速:利用GPU、FPGA、ASIC等专门的硬件加速器来加速AI推理的过程。这些硬件加速器针对AI推理的特点进行设计和优化,从而提高推理速度和效率。...推理加速技术在智能语音、图像识别、自然语言处理等领域有广泛应用,能提升这些技术的识别速度和精度,从而提升用户体验。...模型微调/对齐 模型微调:在已有的预训练模型基础上,通过针对特定任务或行业需求做局部调整,以提升模型在特定领域或任务中的适用性和完成度。微调方法包括全参数微调(FFT)、参数高效微调(PeFT)等。...多模态 多模态是指结合多种感官信息(如文本、图像、声音等)进行AI模型训练和推理的技术。多模态AI大模型是迈向通用人工智能的“必经之路”,在产业中具有潜在革命性影响。
作者:Parth Chokhra 编译:ronghuaiyang 导读 使用多头注意力的Transform在cpu上实现222倍的加速。 ?...开放源代码)并在我们的数据集上微调它们来解决。现在,后一个问题由FastFormers解决了,有一套方法可以实现基于Transformers的模型在各种NLU任务上的高效推理。...“将这些建议的方法应用到SuperGLUE基准测试中,与开箱即用的CPU模型相比,作者能够实现9.8倍到233.9倍的加速。在GPU上,我们也实现了12.4倍的加速。"...batch size为1的BoolQ验证数据集上的CPU推理加速 总结 本文介绍了FastFormers,它能对基于Transformer的模型在各种NLU任务上实现高效的推理时间性能。...论文FastFormers的作者表明,利用知识蒸馏、结构化剪枝和数值优化可以大幅提高推理效率。我们表明,这种改进可以达到200倍的加速,并在22倍的能耗下节省超过200倍的推理成本。 ?
在本文中,我们将讨论如何在Colab上使用TPU训练模型。具体来说,我们将通过在TPU上训练huggingface transformers库里的BERT来进行文本分类。...以下是我们根据云TPU文档中提到的TPU的一些用例: 以矩阵计算为主的模型 在训练中没有定制的TensorFlow操作 要训练数周或数月的模型 更大和非常大的模型,具有非常大的batch ❝如果你的模型使用自定义的...TensorFlow操作,而云TPU支持的TensorFlow操作不存在,那么你应该要使用GPU进行加速。.../www.tensorflow.org/guide/distributed 训练模型 在本节中,我们将实际了解如何在TPU上训练BERT。...结论 在本文中,我们了解了为什么以及如何调整一个模型的原始代码,使之与TPU兼容。我们还讨论了何时和何时不使用TPU进行训练。
用户可以在云上构建和训练ML模型,然后通过Edge TPU硬件加速器在Cloud IoT Edge设备上运行这些模型。 ?...Edge TPU的设计旨在补充谷歌云TPU,因此,你可以在云中加速ML的训练,然后在边缘进行快速的ML推理。你的传感器不仅仅是数据采集——它们还能够做出本地的、实时的、智能的决策。 ?...随着连接设备的爆炸式增长,再加上对隐私/机密性、低延迟和带宽限制的需求,在云中训练的AI模型越来越需要在边缘上运行。Edge TPU是谷歌为在边缘运行AI而设计的专用ASIC。...Edge TPU使用户能够以高效的方式,在高分辨率视频上以每秒30帧的速度,在每帧上同时执行多个最先进的AI模型。...它允许你在Edge TPU或基于GPU和CPU的加速器上执行在Google Cloud中训练了的ML模型。
仅用于推理,专为在边缘运行TensorFlow Lite ML模型而设计。...用户可以在云上构建和训练ML模型,然后通过Edge TPU硬件加速器在Cloud IoT Edge设备上运行这些模型。...Edge TPU的设计旨在补充谷歌云TPU,因此,你可以在云中加速ML的训练,然后在边缘进行快速的ML推理。你的传感器不仅仅是数据采集——它们还能够做出本地的、实时的、智能的决策。...随着连接设备的爆炸式增长,再加上对隐私/机密性、低延迟和带宽限制的需求,在云中训练的AI模型越来越需要在边缘上运行。Edge TPU是谷歌为在边缘运行AI而设计的专用ASIC。...它允许你在Edge TPU或基于GPU和CPU的加速器上执行在Google Cloud中训练了的ML模型。
这项研究不仅展现了大型语言模型(LLM)在复杂叙事环境中的应用潜力,而且为 AI 智能体的推理能力评估设定了新的试验场。让我们一起深入了解这项研究的细节和其带来的启发。...这项研究的贡献主要涵盖四个方面: 首先,团队构建了一个专门针对剧本杀游戏的数据集,旨在启动和评估 AI 模型; 其次,团队设计了一个多智能体互动框架,允许剧本杀游戏自动进行,从而无需人为干预; 再者,团队开发了一套量化和质化评估方法...事实性问题旨在测试 AI 智能体在游戏过程中收集的信息量,而推理性问题则评估 AI 使用这些信息进行推理的能力。...结语 该研究通过将大型语言模型(LLM)智能体引入侦探角色扮演游戏 “剧本杀”,探索了 LLM 智能体在复杂叙事环境中的应用潜力,为观察和评估 LLM 智能体的行为及能力提供了新的视角和方法,并为社区深入理解大型语言模型的能力开辟了新途径...通过实证研究,该团队证明了其设计的多智能体互动框架和上下文学习模块在信息收集、凶手识别和逻辑推理能力方面,相较于基线模型有了显著提升。这一发现预示着 LLM 在复杂推理任务中应用的广阔前景。
这使得它们在执行诸如从数据集(在云TPU的情况下)中训练机器学习模型以及在设备上执行这些模型(Edge TPU的功能)等任务时非常高效。 ?...你可以在云中构建和训练ML模型,然后通过Edge TPU硬件加速器的功能在Cloud IoT Edge设备上运行这些模型。 ? Cloud IoT Edge使物联网应用更智能,更安全,更可靠。...它允许你在Edge TPU或基于GPU和CPU的加速器上执行在Google Cloud中训练的ML模型。...基于TensorFlow Lite的Edge ML运行时使用预先训练的模型执行本地ML推理,显着减少延迟并增加边缘设备的多功能性。...由于Edge ML运行时与TensorFlow Lite接口,因此它可以在网关类设备中的CPU,GPU或Edge TPU上执行ML推理,或者在终端设备(如摄像头)中执行ML推理。
本文将深入探讨嵌入式人工智能的现状,以及神经网络在边缘设备上的应用。神经网络与嵌入式系统神经网络是一种模拟人脑的计算模型,广泛用于图像识别、自然语言处理、声音识别等领域。...传统上,这些任务需要大量的计算资源,通常由云服务器来完成。但是,随着嵌入式系统性能的不断提升,将神经网络部署在边缘设备上变得可能。神经网络模型神经网络模型是嵌入式人工智能的核心。...这些模型通过训练从数据中学习特征,并可以用于在边缘设备上进行推理和决策。硬件要求在边缘设备上运行神经网络需要满足一定的硬件要求。...Edge TPU 示例Google的Edge TPU是一种专门设计用于加速深度学习推理的硬件加速器。以下示例演示了如何在嵌入式系统上使用Edge TPU加速神经网络推理。...Edge TPU硬件加速器来加速神经网络推理。
机器之心报道 机器之心编辑部 来自康涅狄格大学等机构的研究者提出了一种基于结构剪枝的 BCNN 加速器,它能以较小的准确率损失获得 20 倍的剪枝率,并且在边缘设备上提供了超过 5000 帧 / 秒的推理吞吐量...本文中,来自康涅狄格大学、斯蒂文斯理工学院等机构的研究者提出了一种基于结构剪枝的 BCNN 加速器,它能够在边缘设备上提供超过 5000 帧 / 秒的推理吞吐量。...首先,为了确定最终模型池化层功能,在 BCNN 模型上比较了光谱(spectral)池化、平均剪枝和最大池化。比较三种池化可达到的精度,结果如表 1 所示。...该研究在四种模型上进行了测试:NIN-Net、复数 NIN-Net、ResNet-18 和复数 ResNet-18 在 CIFAR-10 数据集上的准确率如下表所示。 ...NIN-Net 模型的 BCNN 上实现了 1.51 倍的加速,在基于 ResNet-18 模型的 BCNN 上实现了 1.58 倍的加速。
大约3年前,谷歌宣布他们设计了Tensor Processing Unit(TPU)来加速数据中心的深度学习推理速度,这引发了成熟的科技公司和初创公司为数据中心和边缘推出专用AI芯片的热潮。...而检测任务要求更高,因为它需要检测多个对象的位置及其类别,例如多辆汽车和行人。这正是需要硬件加速的应用。 在理解了这两个应用的含义后,我们现在可以查看基准测试结果(稍后我将解释DNR)。...传统上,深度学习模型在FP32中进行训练,一般来说,它们可以很容易地转换为FP16,而不会有太多精度损失。但是,对于INT8来说情况并非如此,其中训练后转换通常会给您带来灾难性的准确度。...谷歌提供了一些预先训练好的模型,您可以对模型进行微调,节省大量时间,但不幸的是,您只能选择很有限的几种计算机视觉模型。这就是为什么Nvidia的基准测试中Edge TPU存在如此多DNR的原因。...INTEL NCS2 优点:支持Windows,部署快,模型选择多 缺点:推理速度相对较慢,价格较高 最佳应用是运行Windows的自助服务终端、ATM和销售网点系统。容易快速升级现有系统到AI。
其次是能效比,尤其是在移动设备和边缘计算场景中,芯片必须在保证高性能的同时,尽量降低功耗。这要求芯片设计者在硬件架构和算法加速技术上进行优化,以提高计算效率并减少能源消耗。...相比之下,边缘和端侧推理对功耗和成本更加敏感,因此需要使用低功耗、低成本的 AI 芯片,如专门为移动和嵌入式设备设计的 NPU、TPU 等。...功耗方面,推理芯片通常部署在边缘设备上,因此需要具有较低的功耗,以延长设备续航时间。成本方面,推理芯片需要价格亲民,才能被更广泛地应用。除此之外,推理芯片还需要考虑其他几个重要因素。...通过将 AI 芯片和模型部署在边缘设备和终端设备上,可以大大减少数据传输的延迟和带宽压力,提高 AI 应用的实时性和安全性。同时,端侧部署也对 AI 芯片的功耗和成本提出了更高的要求。...下图为 GPU 架构概略图,我们可以看到其有非常多的计算单元,这为其提供了非常快速的数据并行处理能力, FPGA FPGA 作为一种可重构的硬件,在 AI 加速领域也有广泛的应用。
其次是能效比,尤其是在移动设备和边缘计算场景中,芯片必须在保证高性能的同时,尽量降低功耗。这要求芯片设计者在硬件架构和算法加速技术上进行优化,以提高计算效率并减少能源消耗。...相比之下,边缘和端侧推理对功耗和成本更加敏感,因此需要使用低功耗、低成本的 AI 芯片,如专门为移动和嵌入式设备设计的 NPU、TPU 等。...功耗方面,推理芯片通常部署在边缘设备上,因此需要具有较低的功耗,以延长设备续航时间。成本方面,推理芯片需要价格亲民,才能被更广泛地应用。除此之外,推理芯片还需要考虑其他几个重要因素。...通过将 AI 芯片和模型部署在边缘设备和终端设备上,可以大大减少数据传输的延迟和带宽压力,提高 AI 应用的实时性和安全性。同时,端侧部署也对 AI 芯片的功耗和成本提出了更高的要求。...下图为 GPU 架构概略图,我们可以看到其有非常多的计算单元,这为其提供了非常快速的数据并行处理能力,FPGAFPGA 作为一种可重构的硬件,在 AI 加速领域也有广泛的应用。
前言 本文主要讲一些看到的RWKV 6模型的Linear Attention模块推理加速方法,在这篇博客中暂不涉及对kernel的深入解析。...和rwkv6_cuda_linear_attention两个接口方便在HuggingFace模型实现中直接加速推理的prefill阶段速度。...瓶颈是什么 RWKV6 推理 Prefill 阶段的性能瓶颈就在于RWKV6模型代码中的rwkv6_linear_attention_cpu函数:https://huggingface.co/RWKV/...Profile代码编写 上一节明确了,我们需要加速RWKV模型中rwkv6_linear_attention_cpu的计算,https://github.com/sustcsonglin/flash-linear-attention...这个库在2024年4月份支持了RWKV6模型,它加速RWKV 6 Linear Attention计算的核心api有两个,fused_recurrent_rwkv6和chunk_rwkv6。
其中,训练芯片对算力、精度和通用性要求较高,一般部署在云端,多采用“CPU+加速芯片”这类异构计算模式;推理芯片更加注重综合性能,更考虑算力耗能、延时、成本等因素,在云端和边终端都可以部署。...早在2018年,谷歌就发布了用于边缘推理的微型AI加速芯片——Edge TPU,专为企业在IoT设备中的机器学习任务而设计。...在去年3月,谷歌还推出了千元级搭载Edge TPU芯片的开发板,可以加速硬件设备上的模型推理。...在去年7月的百度AI开发者大会,联合三大运营商、中兴、爱立信、英特尔等,发起百度AI边缘计算行动计划,旨在利用AI推理、函数计算、大数据处理和产业模型训练,推动AI场景在边缘计算的算力支撑和平台支持,加速百度...在自动驾驶这类专用边缘场景上,AI芯片也出现加速势头。目前,由于自动驾驶算法仍在快速更迭和进化,大多自动驾驶芯片使用 GPU+FPGA 的解决方案。
作为Cloud TPU的补充,目前Edge TPU仅用于推理,专为在边缘运行TensorFlow Lite ML模型而设计。...Edge TPU芯片是谷歌边缘计算“两条腿”走路的重要支撑硬件,谷歌正在“两手抓” -一手抓硬件,一手抓软件 - 将数据分析和机器学习功能带到边缘网络,甚至是个人物联网(IoT)设备,以更好地处理越来越多的物联网设备产生的数据...谷歌在边缘计算迈出的第一步是将其Cloud IoT软件平台的功能扩展到边缘网络。第二步是推出Edge TPU微型芯片,芯片可集成到物联网设备上,并在传输前处理设备收集的数据。...是专门设计的加速器芯片,用于在边缘运行TensorFlow Lite机器学习模型。...它能够在较小的物理和功耗范围内提供高性能,可在边缘部署高精度AI。Edge TPU可以在边缘部署高质量的机器学习推理。
使用Coral的USB Edge TPU加速器和Edge TPU编译器加速任何TensorFlow Lite模型的推断。...边缘TPU:张量处理单元(TPU)是用于加速 TensorFlow执行的计算的集成电路。...该边缘TPU与小尺寸发展,为移动和嵌入式设备“边缘” 在Google Cloud Next '18上存储TPUv1,TPUv2(上,中)。云TPU加快了TensorFlow模型的训练和推理。...边缘TPU以美分计(下)。边缘TPU加快了移动设备中的推理速度。...Coral Edge TPU USB加速器可 加快Raspberry Pi的推理(预测)速度。不需要此来复制演示。
此次ASUS发布的是基于Google®Coral Edge TPU处理器的全高半长PCIe Gen3 AI加速卡,可在边缘实现基于AI的实时决策过程。 ? ? ?...采用双管风扇优化了散热设计,可以让用户在具有PCIe Gen3插槽的现有设备的基础上快速构建AI推理设备,降低用户的投入成本,加快人工智能设备改造,快速上线AI应用。 这个加速卡的规格如下: ?...ASUS加速卡支持TensorFlow Lite,无需从头开始构建模型。TensorFlow Lite模型可以编译为在Edge TPU上运行。...使用此PCIe卡中的8个Edge TPU,您可以通过几种方式将每秒的推理速度(32 TOPS)相乘,例如通过并行运行多个模型或在所有Edge TPU上流水线化一个模型。 ?...由两个显微镜和X-Y工作台所组成的图像攫取器,透过机器学习模型,它可以快速地在移动印刷电路板组件上做品检。
SIMT 执行模型。图源:英伟达 GPU 遵循单指令多线程 (SIMT) 的编程模型,其中相同的指令在不同的内核 / 线程上并发执行,每条指令都按照其分配的线程 ID 来执行数据部分。...另一方面,SIMT 在概念上仍然是一个多线程类 c 的编程模型,它被重新用于 AI,但它并不是专门为 AI 设计的。...第二代 TPU 于 2017 年 5 月发布,值得注意的是,第一代 TPU 只能进行整数运算,但第二代 TPU 还可以进行浮点运算。这使得第二代 TPU 对于机器学习模型的训练和推理都非常有用。...TSP 架构与 TPU 有很多共同之处:两种架构都严重依赖脉动阵列来完成繁重的工作。与第一代 TPU 相比,TSP 增加了向量单元和转置置换单元(在第二代和第三代 TPU 上也可以找到)。...ET-SoC-1 是一款推理加速器,预计在今年投产。 Esperanto 的 ET-SoC-1 的架构图。
谷歌在会上发布了两款AI硬件:售价仅千元搭载着TPU的开发板;可以为Linux机器学推理加速的计算棒。它俩取代软件成了本次发布会的主角。 ?...在移动设备运行AI模型越来越主流的今天,用于部署在边缘设备上的TensorFlow Lite终于迎来了1.0版。...Coral能够以每秒30帧的速度在高分辨率视频上运行深度前馈神经网络,或者以每秒超过100帧的速度运行MobileNet V2这样的单一模型。 ?...同时,谷歌还发布了一款Coral USB加速器,体内同样包含一颗Edge TPU,可以在任何64位ARM或x86平台的Debian Linux上运行。 ?...Coral USB加速器售价75美元,可以加速树莓派和Linux系统的机器学习推理。
当然,超长上下文在无缝处理输入信息方面,仍然有一定的局限性。 但无论如何,它让对大量数据进行本机多模态推理成为可能。从此,多海量的数据,都可以进行全面、多角度的分析。...(Checkpoint): CodeGemma 7B的预训练版本(PT)和指令微调版本(IT)在理解自然语言方面表现出色,具有出众的数学推理能力,并且在代码生成能力上与其他开源模型不相上下。...代码补全 如表2所示,CodeGemma 2B在代码补全场景下展现出了卓越的性能,尤其是在低延迟的表现上。 其中,推理速度更是比不少模型快了有2倍之多。...作为下一代加速器,TPU v5p专门用于训练一些最大、最苛刻的生成式AI模型。其中,单个TPU v5p pod包含8,960个芯片,是TPU v4 pod芯片数量的两倍之多。...存储大战 此外,谷歌的存储解决方案也在不断升级——不仅加速了AI训练和微调,优化了GPU和TPU的使用,还提高了能效和成本效益。
领取专属 10元无门槛券
手把手带您无忧上云