首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在ARM7TDMI上获取参数的地址时,GCC是否被破坏?

在ARM7TDMI上获取参数的地址时,GCC是否被破坏,这个问题涉及到编程语言和编译器的行为。在这个问题中,GCC是指GNU Compiler Collection,它是一个广泛使用的编译器套件,包括C、C++、Objective-C、Fortran、Java等多种编程语言的编译器。

在ARM7TDMI架构上,GCC编译器可能会使用不同的寄存器来存储函数参数。这取决于编译器的优化选项和目标架构。在某些情况下,GCC编译器可能会将参数存储在堆栈上,而不是寄存器中。因此,如果您在ARM7TDMI上使用GCC编译器,并且希望获取函数参数的地址,则需要考虑这些因素。

在某些情况下,GCC编译器可能会对参数进行优化,例如将参数存储在寄存器中,或者将多个参数合并为一个寄存器。因此,如果您在ARM7TDMI上使用GCC编译器,并且希望获取函数参数的地址,则需要仔细阅读编译器的文档,了解其行为和限制。

总之,GCC编译器在ARM7TDMI架构上获取函数参数的地址时,可能会受到编译器选项和目标架构的影响。因此,在使用GCC编译器时,需要仔细阅读文档,了解其行为和限制。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

哈佛结构与冯.诺依曼结构(普林斯顿结构

大家好,又见面了,我是你们的朋友全栈君。 过去知道计算机的体系结构分为哈佛结构与冯.诺依曼结构,但并没有去总结他们有什么区别。今天来看看它们有什么区别。 冯.诺依曼结构,又称为普林斯顿结构。是一种经典的体系结构,有CPU,总线,外部存储器组成。这种体系结构采用程序代码存储器与数据存储器合并在同一存储器里,但程序代码存储器地址与数据存储器地址分别指向不同的物理地址。程序指令宽度与数据宽度一样。数据总线和地址总线共用。 但是随着CPU设计的发展,pipeline的增加,指令和数据的互斥读取很影响CPU指令执行的scale程度。后来,哈佛大学提出一种的新的结构,这种结构采用数据存储器与程序代码存储器分开,各自有自己的数据总线与地址总线。但这是需要CPU提供大量的数据线,因而很少使用哈佛结构作为CPU外部构架来使用。但是对于CPU内部,通过使用不同的数据和指令cache,可以有效的提高指令执行的效率,因而目前大部分计算机体系都是CPU内部的哈弗结构+CPU外部的风诺伊曼的结构 arm7系列的CPU有很多款,其中部分CPU没有内部cache的,比如arm7TDMI,就是纯粹的风诺伊曼结构,其他有内部cache且数据和指令的cache分离的cpu则使用了哈弗结构

02
  • ARM Cortex-A系列处理器性能分类与对比 | A53、A57、A73等

    在这之前让我们先简单认识一下处理器的架构。所谓处理器架构是CPU厂商给属于同一系列的CPU产品定的一个规范,主要目的是为了区分不同类型CPU的重要标示。目前市面上的CPU指令集分类主要分有两大阵营,一个是intel、AMD为首的复杂指令集CPU,另一个是以IBM、ARM为首的精简指令集CPU。不同品牌的CPU,其产品的架构也不相同,例如,Intel、AMD的CPU是X86架构的,而IBM公司的CPU是PowerPC架构,ARM公司是ARM架构。   下面我们将详细了解近年来ARM公司发布的数款A系列处理器。ARM公司的Cortex-A系列处理器适用于具有高计算要求、运行丰富操作系统以及提供交互媒体和图形体验的应用领域。   Cortex-A73

    03

    ARM的体系结构。

    1.1 Application Cortex Processors (ARM Cortex 应用处理器 )  • Cortex™-A 系列 - 开放式操作系统的高性能处理器  Cortex 应用处理器在先进工艺节点中可实现高达 2GHz+ 标准频率的卓越性能,从而可支持下一代的移动 Internet 设备。这些处理器具有单核和多核种类,最多提供四个具有可选 NEON™ 多媒体处理模块和先进浮点执行单元的处理单元。  所有 Cortex-A 处理器都共享共同的体系结构和功能集。 这使其成为开放式平台设计的最佳解决方案,因为此时不同设计之间软件的兼容性和可移植性最重要:  ARMv7-A 体系结构  对所有操作系统的支持  Linux 完整分配 - Android、Chrome、Ubuntu 和 Debian  Linux 第三方 - MontaVista、QNX、Wind River  Symbian  Windows CE  需要使用内存管理单元的其他操作系统支持  指令集支持 - ARM、Thumb-2、Thumb、Jazelle®、DSP  TrustZone® 安全扩展  高级单精度和双精度浮点支持  NEON™ 媒体处理引擎

    03

    《深入理解计算机系统》(CSAPP)读书笔记 —— 第三章 程序的机器级表示

    在之前的《深入理解计算机系统》(CSAPP)读书笔记 —— 第一章 计算机系统漫游文章中提到过计算机的抽象模型,计算机利用更简单的抽象模型来隐藏实现的细节。对于机器级编程来说,其中两种抽象尤为重要。第一种是由指令集体系结构或指令集架构( Instruction Set Architecture,ISA)来定义机器级程序的格式和行为,它定义了处理器状态、指令的格式,以及每条指令对状态的影响。大多数ISA,包括x86-64,将程序的行为描述成好像每条指令都是按顺序执行的,一条指令结束后,下一条再开始。处理器的硬件远比描述的精细复杂,它们并发地执行许多指令,但是可以采取措施保证整体行为与ISA指定的顺序执行的行为完全一致。第二种抽象是,机器级程序使用的内存地址是虚拟地址,提供的内存模型看上去是一个非常大的字节数组。存储器系统的实际实现是将多个硬件存储器和操作系统软件组合起来。

    03

    逆向工程——栈[三]

    栈是计算机科学里最重要的且最基础的数据结构之一。 从技术上讲,栈就是CPU寄存器里面的某个指针所指向的一片内存区域。这里所说的某个指针通常位于x86/x64平台的ESP寄存器/RSP寄存器,以及ARM平台的SP寄存器。 操作栈最常见的指令是PUSH和POP,在 x86 和 ARM Thumb 模式的指令集里都有这两条指令。 PUSH指令会对ESP/RSP/SP寄存器的值进行减法运算,使之减去4(32位)或8(64位),然后将操作数写到上述寄存器里的指针所指向的内存中。 POP指令是PUSH的逆操作:他先从栈指针(Stack Pionter,上面三个寄存器之一)指向的内存中读取数据,用以备用(通常是写到其他寄存器里面),然后再将栈指针的数值加上4或8. 在分配栈的空间之后,栈指针,即Stack Pointer所指向的地址是栈的底部。PUSH将减少栈指针的数值,而POP会增加它的数值。栈的“底”实际上使用的是整个栈的最低地址,即是整个栈的启始内存地址。 ARM的栈分为递增栈和递减栈。递减栈(descending stack)的首地址是栈的最高地址,栈向低地址增长,栈指针的值随栈的增长而减少,如STMFA/LMDFA、STMFD/LDMFD、STMED、LDMEA等指令,都是递增栈的操作指令。

    03
    领券