为了可视化任何形式的数据,我们都可能在某个时间点使用过数据透视表和图表,如条形图、直方图、饼图、散点图、折线图、基于地图的图表等。这些很容易理解并帮助我们传达准确的信息。...在 Seaborn 中,我们可以使用 "aspect" 设置来控制绘图的纵横比。但是,在 Altair 中,我们还可以通过传递 0 到 1 之间的值来控制点的不透明度值(1 表示完全不透明)。...在这里,我们可以通过在"mark_bar"命令中传递一个值来自定义条形的大小,如下所示。...我们可以通过调整 bin 大小在 Seaborn 中获得相同的图。...为了在 Altair 中设置交互式图表,我们定义了一个具有"interval"类型选择的选择,即在图表上的两个值之间。然后我们使用之前定义的选择定义列的活动点。
使用数据可视化技术可以很容易地发现变量之间的关系、变量的分布以及数据中的底层结构。 在本文中,我们将介绍数据分析中常用的5种基本数据可视化类型。...1.折线图 折线图显示了两个变量之间的关系。其中之一通常是时间。因此,我们可以看到变量是如何随时间变化的,例如股票价格,每日温度。 下面是如何用Altair创建一个简单的折线图。...encode函数指定绘图中使用的列。因此,在encode函数中写入的任何内容都必须链接到数据帧。 Altair提供了更多的函数和参数来生成更多信息或定制的绘图。我们将在下面的例子中看到它们。...mark_circle函数的size参数用于调整散点图中点的大小。 3.直方图 直方图用于显示连续变量的分布。它将取值范围划分为离散的数据元,并统计每个数据元中的数据点个数。...A中的值范围小于其他两个类别。框内的白线表示中值。 5.条形图 条形图可用于可视化离散变量。每个类别都用一个大小与该类别的值成比例的条表示。
_1='column_1', encoding_2='column_2', etc. ) Data:Altair内部使用的数据以Pandas中的Dataframe格式存储,但有以下三种方式传入: 以Pandas...Encoding:编码方式定义了图片显示的各种属性,如每个图片的位置,图片轴的属性等。这部分是最重要的,记住关键的几个就行。...交互 除了绘制基本图像,Altair强大之处在于用户可以与图像进行交互,包括平移、缩放、选中某一块数据等操作。在绘制图片的代码后面,调用interactive()模块,就能实现平移、缩放。 ?...Altair还为创建交互式图像提供了一个selection的API,在选择功能上,我们能做出一些更酷炫的高级功能,例如本文开头处展示的GIF,对选中的数据点进行统计,生成实时的直方图。...,给个三连好吗?
本文将介绍如何使用Altair库来轻松生成各种类型的统计图表,包括散点图、折线图、柱状图等。我们将提供代码示例来说明如何使用Altair创建这些图表,以便读者可以轻松上手并在自己的项目中使用。...Altair库提供了丰富的数据转换和聚合功能,使得我们可以在图表中直接使用这些操作。...以下是一些示例代码,演示如何在Altair中进行数据转换与聚合:数据透视import altair as altimport pandas as pd# 创建示例数据data = pd.DataFrame...我们提供了多个示例代码来演示如何使用Altair创建不同类型的图表,包括散点图、折线图、柱状图等。...这些功能使得我们可以在图表中直接使用这些操作,而不必事先对数据进行处理,从而更方便地探索和理解数据的特征和趋势。
最后,使用st.map函数将DataFrame中的经纬度数据显示在地图上。...散点图的x轴和y轴分别对应DataFrame中的"a"和"b"列,点的大小和颜色分别对应DataFrame中的"c"列,同时鼠标悬停在点上时会显示"a"、"b"和"c"的数值。...最后使用streamlit的altair_chart函数将这个图表展示在应用中,并设置了use_container_width=True以自适应容器宽度。...如果不存在,就创建一个包含20行3列随机数的DataFrame,并将其存储在会话状态中。然后,将数据存储在变量df中。...然后,代码使用Altair库创建了一个散点图。散点图的x轴和y轴分别对应DataFrame中的"a"和"b"列,点的大小和颜色分别对应DataFrame中的"c"列。
基于Vega-Lite 的JSON 语法规则生成Altair 的Python 代码。 在启动的Jupyter Notebook、JupyterLab 和nteract 中展示统计可视化过程。...可以将可视化作品导出为PNG/SVG 格式的图片、独立运行的HTML 格式的网页,或者在线上Vega-Lite 编辑器中查看运行效果。 在Altair中,使用的数据集要以“整洁的格式”加载。...alt.X()中,使用month 提取时间型变量date 的月份,映射在位置通道x轴上,使用汇总函数mean()计算平均降雨量,使用折线作为编码数据的标记样式。...在实例方法encode()中,使用子区通道facet 设置分区,使用year 提取时间型变量date 的年份,作为拆分从2012 年到2015 年每个月的平均降雨量的分区标准,从而将每年的不同月份的平均降雨量分别显示在对应的子区上...第9 章,介绍使用Altair 设置颜色的方法,以及配置图形属性的作用范围的实现方法。
交互式工具:提供了交云式界面,如可以缩放和拖动的图表。动画支持:可以创建动画图表,展示数据随时间的变化。扩展性:可以通过扩展包支持更多的功能,如3D绘图等。...数据操作:Plotly 可以与 pandas 等数据处理库无缝集成,使得数据操作和可视化可以在同一环境中完成。跨浏览器兼容:Plotly 的图表在大多数现代浏览器中都能良好工作,无需任何插件。...title_x=0.45, title_y=0.95, autosize=False, legend=dict(font=dict(size=size)) # 图例大小设置...它们也可以在 Jupyter 笔记本中呈现。开源:Bokeh 是一个开源项目,在 Berkeley Source Distribution (BSD) 许可证下分发。...Bokeh 允许用户创建各种类型的图表,包括线图、散点图、柱状图、热图等,而且这些图表都可以在 Web 浏览器中交互式地操作。
今天就来和大家分享Python数据可视化库中的一员猛将——Altair!...基于Vega-Lite 的JSON 语法规则生成Altair 的Python 代码。 在启动的Jupyter Notebook、JupyterLab 和nteract 中展示统计可视化过程。...可以将可视化作品导出为PNG/SVG 格式的图片、独立运行的HTML 格式的网页,或者在线上Vega-Lite 编辑器中查看运行效果。 在Altair中,使用的数据集要以“整洁的格式”加载。...alt.X()中,使用month 提取时间型变量date 的月份,映射在位置通道x轴上,使用汇总函数mean()计算平均降雨量,使用折线作为编码数据的标记样式。...在实例方法encode()中,使用子区通道facet 设置分区,使用year 提取时间型变量date 的年份,作为拆分从2012 年到2015 年每个月的平均降雨量的分区标准,从而将每年的不同月份的平均降雨量分别显示在对应的子区上
Altair是什么 Altair是统计可视化Python 库,目前在GitHub上已经收获超过3000 Star。...基于Vega-Lite 的JSON 语法规则生成Altair 的Python 代码。 在启动的Jupyter Notebook、JupyterLab 和nteract 中展示统计可视化过程。...可以将可视化作品导出为PNG/SVG 格式的图片、独立运行的HTML 格式的网页,或者在线上Vega-Lite 编辑器中查看运行效果。 在Altair中,使用的数据集要以“整洁的格式”加载。...alt.X()中,使用month 提取时间型变量date 的月份,映射在位置通道x轴上,使用汇总函数mean()计算平均降雨量,使用折线作为编码数据的标记样式。...在实例方法encode()中,使用子区通道facet 设置分区,使用year 提取时间型变量date 的年份,作为拆分从2012 年到2015 年每个月的平均降雨量的分区标准,从而将每年的不同月份的平均降雨量分别显示在对应的子区上
今天小编来和大家聊一下Python当中的altair可视化模块,并且通过调用该模块来绘制一些常见的图表,借助Altair,我们可以将更多的精力和时间放在理解数据本身以及数据的意义上面,从复杂的数据可视化过程中解脱出来....html") output 同时我们也来尝试绘制一张折线图,调用的是mark_line()方法代码如下 ## 创建一组新的数据,以日期为行索引值 np.random.seed(29) value =...titleFontSize=15))) chart.save("chart_gantt.html") output 从上图中我们看到团队当中正在做的几个项目...padding=20)), alt.Y("Miles_per_Gallon:Q", scale=alt.Scale(zero=False,padding=20)) ) output 我们更改散点的大小...,不同散点的大小代表着不同的值,代码如下 chart = df_1.mark_circle(color=alt.RadialGradient("radial",[alt.GradientStop("white
4、通过左边栏可以选择四个内置小项目并查看其代码,例如分形动画、折线图和层叠地图等,能在网页上点击选择设置一些参数,动态查看效果。 ? ?...2.2 基础命令 2.2.1 显示文本 命令 效果 st.title() 添加一个标题 st.write() Streamlit 的瑞士军刀,可渲染如文本、Matplotlib 和 Altair 图表等几乎任何数据参数...2.2.2「魔法」 我愿称之为懒人命令——用尽量少的代码达到同样的效果。在不调用任何 Streamlit 方法的情况下,当用户自定义的变量出现在单行中,等同于 st.write() 效果。...2.2.4 绘制图表和地图 Streamlit 支持多种流行的数据图表库,如 Matplotlib、Altair、deck.gl 等。...当我们给函数打上 cache 标记时,Streamlit 在碰到该函数的时候会检查三个值:函数名称、函数体、输入参数。如果发现这三个值的组合第一次出现,则会运行函数,并且将结果存储在本地缓存中。
Seaborn Seaborn是在Matplotlib基础上经过高级封装的可视化库,一般用于统计分析,是数据科学领域的核心可视化库,类似于kaggle这种数据比赛大部分都用Seaborn。...比如说Seaborn可以一行代码设置图表的配色风格,什么统计风、商务风、学术风,都给你搭配的妥妥的,还有像置信区间这种专业领域的图表也集成到函数中。...Altair Altair也是Python中一个主打统计分析的可视化库,它和Seaborn不同的是,语法会更加简洁,让你在可视化的过程中去分析梳理数据。...Altair基于Vega-Lite语法规则,将可视化描述为从数据到图形标记(例如,圆圈、矩形或折线)和属性(例如,颜色、大小、形状或透明度)的编码映射过程,使用Json格式规范图表外观,使用起来非常简单...Bokeh Bokeh主打web交互式可视化,图表不再是冷冰冰的图片,而是可以随意去调整的可视化交互工具,比如创建看板、应用、网页,都可以轻松实现,你也可以在jupyter notebook上去展示Bokeh
大家好,又见面了,我是你们的朋友全栈君。 数据可视化是数据分析中极为重要的部分,而数据可视化图表(如条形图,散点图,折线图,地理图等)也是非常关键的一环。...Plotly提供了40多种独特的图表类型,例如散点图,直方图,折线图,条形图,饼图,误差线,箱形图,多轴,迷你图,树状图,3-D图表等。Plotly还提供了等高线图,其中在其他数据可视化库中并不常见。...可在单个可视化中添加不同类型的数据可视化组件或层。Ggplot也与熊猫紧密相连,因此最好将数据保留在DataFrames中。 Altair Altair是Python中的统计数据可视化库。...打开Jupyter Notebook或JupyterLab并执行任何代码以在Altair中获得该数据可视化。...Bokeh Bokeh是一个数据可视化库,它为详细的图形提供了跨各种数据集(无论大小)的高交互性。
另外,一些库(如Matplotlib)将可视化渲染成静态图像,使其适合在论文、幻灯片或演示中解释概念。 语法和灵活性 不同库的语法有什么不同?...数据类型和视觉化 是否在处理专门的用例,如地理图或大数据集?考虑一个特定的库是否支持绘图类型或有效处理大型数据集。...在下面的例子中,由于Seaborn的默认设置,计数图在视觉上显得更加吸引人: sns.set(style="darkgrid") titanic = sns.load_dataset("titanic"...缺点 Altair的简单图表,如柱状图,可能看起来不像Seaborn或Plotly等库中的图表那样有风格,除非你指定自定义风格。...Altair建议在处理超过5000个样本的数据集时,在可视化之前对数据进行汇总。处理更大的数据集可能需要额外的步骤来管理数据大小和复杂性。 经验之谈:Altair 是创建复杂统计图表的绝佳选择。
这两个属性决定了绘制的图表大小。绘制一个div容器并设置容器的样式,容器可以设置的样式并不仅限于宽与高,还可以设置其它属性,如定位等。 (3)使用init方法初始化容器。...3.1 绘制堆积柱状图 在堆积柱状图中,每一根柱子上的值分别代表不同的数据大小,各个分层的数据总和代表整根柱子的高度。堆积柱状图适合少量类别的对比,并且对比信息特别清晰。...为了更直观地查看商品销售数据和名胜风景区的门票价格数据,需要在ECharts中绘制不同的折线图进行展示,如标准折线图、堆积面积图、堆积折线图和堆积面积折线图。...在折线图中,通常沿横轴标记类别,沿纵轴标记数值。 利用某都市一周内的人流量统计数据绘制标准折线图,如图所示。...4.1 绘制堆积面积图和堆积折线图 堆积折线图的作用是用于显示每一数据所占大小随时间或有序类别而变化的趋势,展示的是部分与整体的关系。 堆积面积图是在折线图中添加面积图,属于组合图形中的一种。
Altair库作为Python中的一款强大工具,为用户提供了丰富的图表绘制功能。让我们从一个个例子入手,看看它能做到什么程度的图表。...可以从图中看出来,不同的颜色代表不同的分类(因为绑定数据源中的 category 列)。...点的大小,代表不同的 size 列的值 tooltip 参数,使得当鼠标停在泡泡上面时,会出现提示信息 王者 接下来才是 altair 的核心,还是前面的泡泡图,不过可以缩放平移交互: import altair...alt.Chart(data).mark_point().encode( # 编码省略... ).properties( # 属性省略... ).add_selection( brush ) 在散点图的属性中...这样当我们在散点图中选择区域时,下方的柱状图会根据所选择的区域显示相应的数据。
Altair由华盛顿大学的数据科学家Jake Vanderplas编写,目前在GitHub上已经收获超过3000星。...使用教程 Parul以汽车数据为例,将一个汽车数据集“cars”载入到Altair中。 cars中包含汽车的生产年份、耗油量、原产国等9个方面的数据,后面将对这些内容进行可视化处理。...接着在终端中输入:jupyter lab,就能在你的浏览器中自动打开它啦。...在代码开头别忘了导入Altair: import altair as alt 完成以上准备工作,我们就可以开始绘图了 开始绘制图表 Altair中的基本对象是Chart,它将数据框作为单个参数。...标记和编码则决定着绘制图表的样式,下面着重介绍这两部分。 标记可以让用户在图中以不同形状来表示数据点,比如使用实心点、空心圆、方块等等。
使用教程 Parul以汽车数据为例,将一个汽车数据集“cars”载入到Altair中。 cars中包含汽车的生产年份、耗油量、原产国等9个方面的数据,后面将对这些内容进行可视化处理。...接着在终端中输入:jupyter lab,就能在你的浏览器中自动打开它啦。...在代码开头别忘了导入Altair: import altair as alt 完成以上准备工作,我们就可以开始绘图了 开始绘制图表 Altair中的基本对象是Chart,它将数据框作为单个参数。...标记和编码则决定着绘制图表的样式,下面着重介绍这两部分。 标记可以让用户在图中以不同形状来表示数据点,比如使用实心点、空心圆、方块等等。...在绘制图片的代码后面,调用interactive()模块,就能实现平移、缩放: Altair还为创建交互式图像提供了一个selection的API: 在选择功能上,我们能做出一些更酷炫的高级功能,
领取专属 10元无门槛券
手把手带您无忧上云