首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

重新思考序列推荐中的预训练语言模型

论文:arxiv.org/pdf/2404.08796.pdf 在预训练语言模型的帮助下,序列推荐取得了重大进展。...当前基于预训练语言模型的序列推荐模型直接使用预训练语言模型编码用户历史行为的文本序列来学习用户表示,而很少深入探索预训练语言模型在行为序列建模中的能力和适用性。...基于此,本文首先在预训练语言模型和基于预训练语言模型的序列推荐模型之间进行了广泛的模型分析,发现预训练语言模型在行为序列建模中存在严重的未充分利用(如下图1)和参数冗余(如下表1)的现象。...受此启发,本文探索了预训练语言模型在序列推荐中的不同轻量级应用,旨在最大限度地激发预训练语言模型用于序列推荐的能力,同时满足实际系统的效率和可用性需求。...在五个数据集上的广泛实验表明,与经典的序列推荐和基于预训练语言模型的序列推荐模型相比,所提出的简单而通用的框架带来了显著的改进,而没有增加额外的推理成本。

16310

应对AI模型训练中的“Time Limit Exceeded”错误:优化训练效率

⏳ 应对AI模型训练中的“Time Limit Exceeded”错误:优化训练效率 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...摘要 在训练AI模型时,“Time Limit Exceeded”是一个常见的错误,尤其是在资源受限的环境中。本文将探讨如何优化训练效率,解决这一错误。...在资源受限的环境中,如使用有限的计算资源或在云服务中进行训练时,经常会遇到“Time Limit Exceeded”错误。这不仅影响模型的开发进度,还可能导致资源浪费。...“Time Limit Exceeded”错误通常发生在以下几种情况下: 资源受限:计算资源(如CPU/GPU)有限,无法在规定时间内完成训练。 模型复杂性:模型结构复杂,训练时间长。...总结 应对AI模型训练中的“Time Limit Exceeded”错误是提升训练效率的重要一环。

10610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    android onresume函数,android – 在Activity中重新创建后未调用onResume

    在应用程序设置中进行某些更改时,我在recreate的onActivityResult中调用MainActivity。重新创建后,不调用onResume。...我也收到错误:E/ActivityThread: Performing pause of activity that is not resumed 从this问题开始,我了解到不能从onResume调用此函数...这可能是什么错误?没有recreate的情况下如何使用Handler? 任何想法将不胜感激。谢谢! 最佳答案 在onResume()之前调用OnActivityResult()。...您可以做的是在OnActivityResult()中设置一个标志,您可以在onResume()中检入,如果该标志为true,则可以重新创建活动。...您实际上可以做的是完成活动并开始相同的活动,而不是重新创建活动。您将获得相同的效果。

    3.4K20

    重新聚焦Attention在微调大模型中的重要性

    (fine-tuning,LoRA,prompt tuning等等)往往无法将模型的attention聚焦在和下游任务相关的信息上。...图1:(a) 我们的方法通过重新聚焦模型的attention来大幅提升大模型在下游任务上的表现;(b) 目前的微调方法往往无法将模型的注意力集中到和下游任务有关的信息上(在这个例子里是前景的鸟)。...在这篇文章中我们发现,通过把模型的attention重新聚焦到和下游任务相关的信息上(图1(a)),我们可以大幅提高模型在下游任务的表现。...在这篇工作中,我们重新聚焦attention的方法就是,首先把预训练过的模型固定住,在上面加一个top-down attention模块,然后在下游任务上只去微调这个top-down attention...模块即可: 图2:我们的方法将预训练过的模型(蓝色部分)固定住,然后在上面加一个top-down attention模块(橙色部分)并且只微调这个模块。

    13010

    前端搞AI:在浏览器中训练模型

    识别鸢尾花 本文将在浏览器中定义、训练和运行模型。为了实现这一功能,我将构建一个识别鸢尾花的案例。 接下来,我们将创建一个神经网络。...我们需要采取的第一步是将这个数据集拆分为训练集和测试集。 这样做的原因是我们将使用我们的训练集来训练我们的算法和我们的测试集来检查我们的预测的准确性,以验证我们的模型是否可以使用或需要调整。...我们只讨论了 Irises 的一个小数据集,但如果您想继续使用更大的数据集或处理图像,步骤将是相同的: 收集数据; 在训练集和测试集之间拆分; 重新格式化数据以便 Tensorflow.js 可以理解它...JavaScript 中定义、训练和运行机器学习模型 鸢尾花分类 ...正在训练中...

    74510

    如何处理AI模型中的“Gradient Vanishing”错误:优化训练技巧

    如何处理AI模型中的“Gradient Vanishing”错误:优化训练技巧 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...今天,我们将深入探讨AI模型训练中的一个常见难题——“Gradient Vanishing”错误,并提供一些优化训练的技巧来解决这个问题。...摘要 在深度学习的训练过程中,“Gradient Vanishing”错误是一个令人头疼的问题。它通常会导致模型无法有效地学习和收敛,尤其是在处理深层神经网络时。...这些优化技巧不仅能够提升模型的性能,还能加速模型的收敛。 总结 在本文中,我们详细分析了“Gradient Vanishing”错误的成因,并提供了多种优化训练的技巧。...希望这些方法能够帮助大家更好地进行AI模型的训练。如果你有任何问题或更好的建议,欢迎在评论区分享! 未来展望 随着AI技术的不断发展,训练过程中的问题也会日益复杂。

    9110

    TStor CSP文件存储在大模型训练中的实践

    在大模型技术的快速演进中也暴露了若干挑战。...训练架构】 在整个训练过程中,我们从如下几个方面进一步剖析TStor CSP的实现方案: 一、高速读写CheckPoint 对于大模型分布式训练任务来说,模型CheckPoint的读写是训练过程中的关键路径...在训练过程中,模型每完成一个 epoch迭代就有需要对CheckPoint进行保存。在这个CheckPoint保存过程中,GPU算力侧需要停机等待。...在大模型系统中同样如此,存储系统的IO中断或数据丢失会直接影响模型训练效果,严重者会导致近几个epoch任务需要推倒重做,大大影响了业务效率。...TStor CSP在支撑大模型训练场景中不断优化自身的运维管控能力,顺利支持了多套大模型业务的复杂运维需求。 图形化运维 集群创建,扩容以及后期的运维都可以通过在CSP控制台操作完成。 【图7.

    45120

    MobileNet教程(2):用TensorFlow搭建安卓手机上的图像分类App

    王瀚宸 编译自 Hackernoon 量子位 报道 | 公众号 QbitAI 上周末,量子位翻译了一份MobileNet教程,其中讲述了怎样在一个新的数据集上重新训练MobileNet,那篇文章的成果,...目标和计划 首先,让我们明确目标和计划,我们希望做到: 在很小的特定数据上重新训练MobileNet; 模型在hold out测试集(即模型训练前为测试留出的样本)上达到95%的准确率; 程序运行时对300...为了达到这些目标,我们的计划是: 生成一个新的训练数据集; 训练多个MobileNet结构,从而寻找所能够达到准确率目标(95%)的最小型网络; 与在Android上运行的Inception V3做对比...关于重新训练MobileNet的操作细节,可以看我的前一篇推送。...用Android Studio打开这个文件夹,编译,然后把生成的APK安装包搭载到你的手机上,你就得到了一个搭载着在ImageNet数据集上训练出的Inception V3模型的图像分类器App,它能够准确地把猫咪跟鸭嘴兽区分开来

    1.7K60

    教程 | 如何在手机上使用TensorFlow

    而能够在智能手机上运行TensorFlow的工具也已经被开发了出来。你是否也曾想过自己在手机上训练一个深度学习模型呢?...总体思路十分简单:首先使用Inception-v3模型,只对它的最后一层重新训练,然后对模型进行优化,最后嵌入到手机设备上就可以使用了。...好了,回到本文,我们现在就得到一个已经训练好的模型了。 我们以花为例,在训练模型时,使用的数据:包括郁金香、雏菊、向日葵、蒲公英和玫瑰。当然你也可以使用其它种类的数据对模型进行训练。...首先是对所选网络最后一层重新训练以后的模型版本: 之后,你会得到两个文件。...注意:我很确定我在iOS部分留下一些疏漏。如果你有任何错误,请通过这个官方链接进行评论,寻找帮助。

    2.6K70

    小白也可以操作的手机TensorFlow教程:Android版和iOS版

    我们将通过重新训练incepa-v3模型的最终(瓶颈)层来创建一个图像分类器,然后优化智能设备模型。 本教程只包含5-6个步骤: 步骤1:创建带有TensorFlow的模型。...本教程严格专注于智能手机的实现模型,我推荐教程“在CPU上使用自定义图像进行初始化”。所以我们最好在同一页面,并在新目录下用新训练的模型开始操作。...仅供参考:数据模型的训练包含类型的花是郁金香,雏菊,向日葵,蒲公英和玫瑰花。...在这之后,你应该有两个文件,其中一个包含了被选中网络的版本,其最后一层对你的类别进行了重新训练: tf_files/retrained_graph.pb 另一个文件包含了文本标签: tf_files...注意:我很确定我犯了一些错误,或者在iOS部分留下了一些东西。如果你有任何疑问,请浏览下面的官方链接。

    1.4K60

    ResNet 高精度预训练模型在 MMDetection 中的最佳实践

    2 rsb 和 tnr 在 ResNet50 上 训练策略对比 本文将先仔细分析说明 rsb 和 tnr 的训练策略,然后再描述如何在下游目标检测任务中微调从而大幅提升经典检测模型的性能。...基于上述策略重新训练 ResNet50,在 ImageNet 1k 验证数据集上 top-1 accuracy 是 80.4。...3 高性能预训练模型 在目标检测任务上的表现 本节探讨高性能预训练模型在目标检测任务上的表现。本实验主要使用 COCO 2017 数据集在 Faster R-CNN FPN 1x 上进行。...3.3 mmcls rsb 预训练模型参数调优实验 通过修改配置文件中预训练模型,我们可以将 ResNet 的预训练模型替换为 MMClassification 通过 rsb 训练出的预训练模型。...4 总结 通过之前的实验,我们可以看出使用高精度的预训练模型可以极大地提高目标检测的效果,所有预训练模型最高的结果与相应的参数设置如下表所示: 从表格中可以看出,使用任意高性能预训练模型都可以让目标检测任务的性能提高

    3.1K50

    图形显卡与专业GPU在模型训练中的差异分析

    其中,H100等专业级GPU因其强大的计算能力和专为模型训练优化的架构而备受瞩目。然而,这些专业级GPU的价格通常非常高昂。...那么,在模型训练方面,图形显卡和专业级GPU到底有哪些差异呢? 本文将从硬件架构、计算能力、软件支持和成本等方面进行全面分析。...优化:缺乏针对模型训练的软件优化。 专业级GPU 驱动和库:全面支持CUDA、cuDNN以及其他深度学习库。 优化:专门针对模型训练进行了软件层面的优化。...成本 图形显卡通常价格更低,但在模型训练方面,其性价比通常不如专业级GPU。...总结 虽然图形显卡在价格上具有明显优势,但在模型训练方面,专业级GPU由于其强大的计算能力、优化的软件支持和专为大规模数据处理设计的硬件架构,通常能提供更高的性能和效率。

    64420

    TensorFlow 智能移动项目:1~5

    总而言之,我们将在本章中介绍以下主题: 迁移学习 - 什么和为什么 将 Inception v3 模型用于再训练 将 MobileNet 模型用于再训练 在示例 iOS 应用中使用经过重新训练的模型 在示例...,可用于重新训练 Inception v3 或 MobileNet 模型。...在示例 iOS 应用中使用经过重新训练的模型 我们在第 1 章,“移动 TensorFlow 入门”中看到的 iOS 简单示例使用了 Inception v1 模型。...在示例 Android 应用中使用经过重新训练的模型 在 Android 的“TF 分类”应用中使用经过重新训练的 Inception v3 模型和 MobileNet 模型也非常简单。...TensorFlow 实验性 Pod 在诸如 Inception 和 MobileNet 之类的模型或其经过重新训练的模型中工作良好。

    4.5K20

    学习笔记TF066 : TensorFlow 移动端应用,iOS、Android系统实践

    移动端、嵌入式设备应用深度学习方式,一模型运行在云端服务器,向服务器发送请求,接收服务器响应;二在本地运行模型,PC训练模型,放到移动端预测。向服务端请求数据可行性差,移动端资源稀缺。...下载预训练Inception V3模型 http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz 。...预训练模型Inception V3 从图片数据集训练,包含DecodeJpeg操作。输入数据直接提供(feed)Decode后Mul操作,绕过Decode操作。...自定义模型编译运行。训练原始模型、编译Android系统支持模型、生成Android apk文件运行。 训练原始模型、编译Android系统支持模型。...应用,输入1万张自己的面部图片,在树莓派训练人脸识别模型,教会它认识你,你进入家门后,帮你开灯、播放音乐各种功能。树莓派编译方法和直接在Linux环境上用相似。

    3.1K01

    NLP在预训练模型的发展中的应用:从原理到实践

    在具体任务中,研究者们可以使用预训练模型的权重作为初始化参数,然后在少量标注数据上进行微调,以适应具体任务的要求。这种迁移学习的方式显著降低了在特定任务上的数据需求,提高了模型的泛化能力。4....预训练模型在文本生成中的应用4.1 GPT-3的文本生成GPT-3是由OpenAI提出的预训练模型,具有1750亿个参数。...预训练模型在情感分析中的应用5.1 情感分析模型的微调预训练模型在情感分析任务中可以通过微调来适应特定领域或应用。通过在包含情感标签的数据上进行微调,模型能够更好地理解情感色彩,提高情感分析的准确性。...)5.2 情感分析应用预训练模型在情感分析应用中具有广泛的实用性。...预训练模型在语义理解中的应用6.1 语义相似度计算预训练模型在语义相似度计算任务中有出色表现。通过输入两个句子,模型可以计算它们在语义上的相似度,为信息检索等任务提供支持。

    36820

    OpenCV 基于Inception模型图像分类

    ---- Inception v1 受到这篇文章的影响与启发,谷歌在2014也提出一个新的网络模型结构Inception网络也就是大家熟知v1网络,其主要贡献在于实现了NIN网络层数的增加,并且在训练各个网络时候为了提高收敛...,考虑中间层的输出与最终分类错误。...Inception v2 and Inception v3 于是在v1的基础上作者继续工作,加入了BN层,对大于3x3的卷积用一系列小的卷积进行替代,比如7x7可以被1x7与7x1替代两个小卷积核,5x5...OpenCV DNN模块中使用Inception模型 下载Inception预训练网络模型 使用OpenCV DNN模块相关API加载模型 运行Inception网络实现图像分类 完整的代码实现如下:..."D:/android/opencv_tutorial/data/models/inception5h/tensorflow_inception_graph.pb"; vector readClassNames

    1.2K40

    手写批量线性回归算法:在Python3中梯度下降方法实现模型训练

    在这篇文章中,我们将看一个使用NumPy作为数据处理库的Python3编写的程序,来了解如何实现使用梯度下降法的(批量)线性回归。 我将逐步解释代码的工作原理和代码的每个部分的工作原理。 ?...在此方法中,我们将平方误差总和用作损失函数。 ? 除了将SSE初始化为零外,我们将在每次迭代中记录SSE的变化,并将其与在程序执行之前提供的阈值进行比较。如果SSE低于阈值,程序将退出。...在该程序中,我们从命令行提供了三个输入。他们是: threshold — 阈值,在算法终止之前,损失必须低于此阈值。 data — 数据集的位置。...进行变量迭代以确定线性回归在损失函数低于阈值之前执行的次数。在无限while循环中,再次计算预测的输出值,并计算新的SSE值。...迭代次数增加1,当前SSE被存储到先前的SSE中。如果较旧的(上一次迭代的SSE)和较新的(当前迭代的SSE)之间的绝对差值低于阈值,则循环中断,并将最后的输出值写入文件。

    91410

    谷歌TensorFlowLite正式发布,机器学习框架向移动端大步挺进!

    图丨 TensorFlow Lite 的设计架构 组成部分 TensorFlow 模型(TensorFlow Model):保存在磁盘上、经过训练的 TensorFlow 模型; TensorFlow...TensorFlow Lite 模型文件被应用在移动应用程序中 Java API:安卓设备上适用于 C++ API 的便利封装; C++ API:加载 TensorFlow Lite 模型文件并启动编译器...TensorFlow Lite 已支持多个面向移动端训练和优化的模型 MobileNet:一类能够识别 1000 个不同的对象的视觉模型,专门为移动和嵌入式设备而设计; Inception v3:一种功能类似...第一方和第三方通信应用可以在 Android Wear 上使用该功能。 Inception v3 和 MobileNets 已经在 ImageNet 数据集上训练。...你可以通过迁移学习,在自己的图像数据集上重新训练。

    1K70

    TensorFlow 智能移动项目:11~12

    TensorFlow Mobile 重新训练的 Inception 3 模型文件的量化版本,如我们在第 2 章,“通过迁移学习对图像进行分类”的 HelloTensorFlow 应用中所见,约为 22.4MB...总之,以下列出了四种不同类型的模型的大小: TensorFlow Mobile Inception 3 模型:95.7MB 量化和重新训练的 TensorFlow Mobile Inception 3...在 iOS 中为 TensorFlow Lite 使用经过重新训练的 TensorFlow 模型 在第 2 章,”通过迁移学习对图像进行分类“中,我们重新训练了 MobileNet TensorFlow...默认情况下,摄像机示例还使用label_image/data文件夹中解压缩的预构建 Inception 模型。 但是对于您自己的特定图像分类任务,提供通过迁移学习重新训练的模型。...在本书中,我们从三个经过预训练的 TensorFlow 模型开始,这些模型分别是图像分类,对象检测和神经样式迁移,并详细讨论了如何重新训练模型并在 iOS 和 Android 应用中使用它们。

    4.3K10
    领券