在互联网时代,每时每刻都在产生大量的数据。而气象领域更是一个“大数据”领域。除地面观测站之外,在轨卫星每年也会产生PB级气象数据,还有大量的数值模式数据。
“流数据”是连续生成的数据,通常由某些外部源(如远程网站,测量设备或模拟器)生成。这种数据在金融时间序列,Web服务器日志,科学应用程序和许多其他情况下很常见。我们已经了解了如何在[实时数据](06-Live _Data.ipynb)用户指南中显示可调用的任何数据输出,我们还看到了如何使用HoloViews流系统在用户指南中推送事件部分[响应事件](11-响应_到Events.ipynb)和[自定义交互](12-Custom Interactivity.ipynb)。
在数据科学和分析的世界里,将数据可视化是至关重要的一步,它能帮助我们更好地理解数据,发现潜在的模式和关系。Python 提供了多种可视化工具,HvPlot 是其中一个出色的库,专为简单且高效的交互式可视化设计。
作者通过引入datashader、geopandas 和 colorcet 等库,演示了如何处理和展示大规模数据,以及如何创建地理空间数据的可视化效果。
今天我们在进行一个Python数据可视化的实战练习,用到的模块叫做Panel,我们通过调用此模块来绘制动态可交互的图表以及数据大屏的制作,而本地需要用到的数据集,可在kaggle上面获取
两个月前需求:使用python3做一个将观测数据编译产出成bufr数据的一个工具 刚刚完成初版,其中的数据文件路径和数据内容格式还需要仔细核对,但整体逻辑已实现,剩下的工作时间可能会用来完善它
颜色显然比图形风格的其他方面都更加重要,因为颜色使用得当就可以有效显示或隐藏数据中的特征。有许多的好资源都可以了解关于在可视化中使用颜色的技巧,推荐Rob Simmon的《series of blog posts》和这篇进阶的技术文章,matplotlib文档现在也有一个很好的教程,说明了如何在内置色彩映射中构建的一些感知特性。
图片本文讲解使用Panel、hvPlot等工具库,简单快速地制作可交互的数据仪表板,对180万起野火数据进行空间可视化,更直观地对起火原因、火势大小、持续时长进行单维或多维分析。---💡 作者:韩信子@ShowMeAI📘 数据分析实战系列:https://www.showmeai.tech/tutorials/40📘 本文地址:https://www.showmeai.tech/article-detail/335📢 声明:版权所有,转载请联系平台与作者并注明出处📢 收藏ShowMeAI查看更多精彩内容图片
在数据科学和数据可视化领域,Holoviews 是一个非常强大的 Python 库,它可以帮助我们轻松地创建各种复杂的可视化布局。Holoviews 提供了一个高层次的接口,使得创建交互式和静态可视化变得简单而直观。本文将介绍如何使用 Holoviews 来创建复杂的可视化布局,让你的数据以最直观的方式展现出来。
作者|Melissa Bierly 选文|Aileen 翻译|冯琛 校对|Elaine琏 数据可视化专家Andy Kirk说过,数据可视化分为两类:探索性可视化图表和解释性可视化图表。解释性可视化图表的目标是进行描述——它们是根据对事物表面的关键线索而被仔细构造出来的。 另一方面,探索性可视化图表建立了与数据库或主题事件的互动,它们帮助用户探索数据,让他们发掘自己的观点:发现他们自己认为相关的或者感兴趣的事物。 通常,探索性可视化图表是交互式的。尽管现在有许多Python绘图库,但只有少数可以创建能够使你
matplotlib算是python比较底层的可视化库,可定制性强、图表资源丰富、简单易用、并且达到出版质量级别。
今天这篇推文我们系统介绍下颜色主题,虽然之前也有介绍过一些优秀的配色网站,也有搭配好的颜色主题可以直接参考,但有没有直接供Python或者R绘图直接使用的关于颜色设置的第三方包呢?这边推文将较为详细的介绍关于Python的R的颜色主题包,主要涉及的内容如下:
最近一直在整理统计图表的绘制方法,发现Python中除了经典Seaborn库外,还有一些优秀的可交互的第三方库也能实现一些常见的统计图表绘制,而且其还拥有Matplotlib、Seaborn等库所不具备的交互效果,当然,同时也能绘制出版级别的图表要求,此外,一些在使用Matplotlib需自定义函数才能绘制的图表在一些第三方库中都集成了,这也大大缩短了绘图时间。今天的推文小编就介绍一个优秀的第三方库-HoloViews,内容主要如下:
现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策。那么数据有什么价值呢?用什么样的手段才能把数据的价值直观而清晰的表达出来? 答案是要提供像人眼一样的直觉的、交互的和反应灵敏的可视化环境。数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息,直观、形象地显示海量的数据和信息,并进行交互处理。 数据可视化的应用十分广泛,几乎可以应用于自然科学、工程技术、金融、通信和商业等各种领域。下面我们基于Python,简单地介绍一下适用于各个领域的几个实用的可视化库,快速带你入门!!
由于经常有读者在文章留言中问到“这些好看的数据可视化图片都是用什么做的呀?”之类的问题,今天Alfred就来推荐一些实用的数据可视化工具给大家,这些工具包含:
最近看到一张图,感觉很酷炫,搜索得知是叫做弦图。看到很多用R语言绘制的案例,以及有Excel大佬用VBA也绘制了一个,简直不要太强。
Material Design 是 Google 打造的、具有超强表现力和适应性的设计系统,包含设计准则、组件和工具,助力实现用户界面设计的最佳实践。Material Design 是开源开放的,提供了一个可自定义的大型组件库,能够满足各种样式和品牌需求,从而可以帮助您的团队在 Android、Flutter 和 Web 领域创造高质量的数字体验。
数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。
为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我们能够生成更忠实的训练示例。
本文盘点了12款常用的Python数据可视化库,挑选适合自己业务的那一款吧!Python有很多数据可视化库,这些数据可视化库主要分为交互式可视化库和探索式可视化库。
欢迎关注“ 计算机视觉研究院 ” 计算机视觉研究院专栏 作者:Edison_G 数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。 长按扫描二维码关注我们 一、前言&简要 为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我
在数据可视化的研究热潮中,如何让数据生动呈现,成了一个具有挑战性的任务,随之也出现了大量的可视化软件。相对于其他商业可视化软件,Python是开源且免费的,而且具有易上手、效果好的优点。 大家普遍第一次接触到的Python数据可视化库基本上都是Matplotlib。Python还有很多数据可视化库,本文盘点了12款常用的Python数据可视化库,挑选适合自己业务的那一款吧! 深入学习Python商业数据可视化技术,推荐阅读《Python商业数据可视化实战》。 ▼ Python有很多数据可视化库,这些数据可
随着新版本的推出,RAPIDS 迎来了其推出一周年纪念日。回顾所经历的一年,RAPIDS团队就社区对该项目的关心和支持表示衷心的感谢。此前,RAPIDS获得了其首个BOSSIE奖。非常感谢各位的支持!RAPIDS团队将继续推动端对端数据科学加快发展,达到新高度。
之前也推送过地球科学领域的Python工具合集 工具推荐|大气科学领域最常使用的工具集合,也单独推送过一些优秀的Python工具。今天在搜索资料的时候发现了这个涉及到空间分析和制图、水文、气象、气候和地震学方面的Python工具合集。
大家普遍第一次接触到的Python数据可视化库基本上都是Matplotlib。Python还有很多数据可视化库,本文我将简单介绍12款常用的Python数据可视化库,并在文末送出一本数据可视化书籍!
数据可视化是数据科学分析的重要环节,是有效传达数据价值的重要渠道。辛苦整理了一天,我们一睹Python可视化工具的精彩之处。
地理空间数据无处不在:在这次新冠肺炎大流行中,我们见识到了各种地理空间数据可视化工具制作出的各种风格的地图。而对Python的使用者来说,有几个非常强大的库可以帮助我们进行地理空间数据可视化。
说到可视化,就不得不说一下大数据,毕竟可视化是解决大数据的一种高效的手段,而如今人人都在谈论大数据,大数据 ≠ 有数据 ≠ 数据量大, 离谱的是,如今就连卖早点的觉得自己能统计每天卖出的种类,都敢说自己是搞大数据。
新媒体管家 说到可视化,就不得不说一下大数据,毕竟可视化是解决大数据的一种高效的手段,而如今人人都在谈论大数据,大数据 ≠ 有数据 ≠ 数据量大, 离谱的是,如今就连卖早点的觉得自己能统计每天卖出的种类,都敢说自己是搞大数据。 时间推移到 2009 年,“大数据” 开始才成为互联网技术行业中的热门词汇。对“大数据”进行收集和分析的设想,起初来自于世界著名的管理咨询公司麦肯锡公司;麦肯锡公司看到了各种网络平台记录的个人海量信息具备潜在的商业价值,于是投入大量人力物力进行调研,在 2011 年 6 月发布
这篇博客主要介绍之前看过的一些图像增强的论文,针对普通的图像,比如手机拍摄的那种,比低光照图像增强任务更简单。
机器之心报道 编辑:陈萍、小舟 Adobe 让视频剪辑变得就像复制、粘贴文本一样简单。 随着各类强大生成模型的问世,人工智能生成内容(AIGC)越来越受到关注。在视觉生成领域,基于 GAN、扩散模型的图像生成模型越来越多,生成效果也越来越好。这些模型也在加速落地,许多「AI 画图」工具的能力都令人惊艳。 作为视觉内容生产力工具大厂的 Adobe,近期终于宣布入局 AIGC 赛道。北京时间本周四晚,Adobe 宣布其视频编辑软件 Premiere Pro 将推出一系列 AI 功能。这是继上个月在 GTC 大会
每每提到数据可视化,大家脑中可能会浮现很各种图表、西装革履的分析师、科幻大片中酷炫的仪表。
大数据x色彩图谱 workshop:利用大数据提取色彩图谱关系,挖掘相关应用产品。
《解析卷积神经网络——深度学习实践手册》基础理论篇部分已经更新完毕,从今天开始更新实践应用篇,正文部分为数据扩充篇目的知识
来源:计算机视觉与机器学习作者丨木瓜子@知乎 链接丨https://zhuanlan.zhihu.com/p/82352961本文约7900字,建议阅读10+分钟文章介绍了近年来比较经典的图像增强模型,并分析其优缺点。 这篇博客主要介绍之前看过的一些图像增强的论文,针对普通的图像,比如手机拍摄的那种,比低光照图像增强任务更简单。 介绍 图像增强的定义非常广泛,一般来说,图像增强是有目的地强调图像的整体或局部特性,例如改善图像的颜色、亮度和对比度等,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图
1 什么是ggplot2 ggplot2是用于绘图的R语言扩展包,其理念根植于《Grammar of Graphics》一书。它将绘图视为一种映射,即从数学空间映射到图形元素空间。例如将不同的数值映射到不同的色彩或透明度。该绘图包的特点在于并不去定义具体的图形(如直方图,散点图),而是定义各种底层组件(如线条、方块)来合成复杂的图形,这使它能以非常简洁的函数构建各类图形,而且默认条件下的绘图品质就能达到出版要求。 2 与lattice包的比较 ggplot2和lattice
大部分情况下,地理绘图可使用 Arcgis 等工具实现。但正版的 Arcgis 并非所有人可以承受。本文基于 Python 的 cartopy 和 matplotlib 等库,为地理空间绘图的代码实现提供参考。
图表是中后台产品最常见的界面信息元素之一,能够直观地展示数据、支撑观点。因大脑对视觉信息的处理优于对文本的处理,所以把数据进行可视化,可以更容易的解释数据模式、趋势、统计规律和数据相关性,也让视觉上也更丰富、美观。 图表的色板是传达信息、美感和情感的重要元素之一。配色不仅要清晰、准确传达信息,给予用户基本的美感,同时需要在多种颜色中,兼顾品牌感,使图表配色不脱离整体的品牌气质。 那是否有什么方法来指导辅助色的建立呢?本文总结了政务类产品在可视化图表配色上的一些探索思路和实践方法。 设计背景与目标 1. 现状
常用的数据扩充方式有:图像水平翻转(horizontally flipping)和随机扣取(random crops),随机抠取操作一般用较大(约 0.8 至 0.9 倍原图大小)的正方形 在原图的随机位置处抠取图像块(image patch/crop),每张图像随机抠取的次数决定了数据集扩充的倍数。其他的数据扩充方式还有尺度变换(scaling)、旋转(rotating)等,从而增加卷积神经网络对物体尺度和方向上的鲁棒性。 在此基础上,对原图或已变换的图像(或图像块)进行色彩抖动(color jittering)也是一种常用的数据扩充手段。色彩抖动是在 RGB 颜色空间对原有 RGB 色彩分布进行轻微的扰动,也可在 HSV 颜色空间尝试随机改变原有的饱和度和明度(即,改变 S 和 V 通道的值)或对色调进行微调(小范围改变该通道的值)。 在实际项目中,往往会将上述几种方式叠加使用,将图像数据扩充至原有数量的数倍甚至数十倍。
图像增强的定义非常广泛,一般来说,图像增强是有目的地强调图像的整体或局部特性,例如改善图像的颜色、亮度和对比度等,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,提高图像的视觉效果。传统的图像增强已经被研究了很长时间,现有的方法可大致分为三类,空域方法是直接对像素值进行处理,如直方图均衡,伽马变换;频域方法是在某种变换域内操作,如小波变换;混合域方法是结合空域和频域的一些方法。传统的方法一般比较简单且速度比较快,但是没有考虑到图像中的上下文信息等,所以取得效果不是很好。 近年来,卷积神经网络在很多低层次的计算机视觉任务中取得了巨大突破,包括图像超分辨、去模糊、去雾、去噪、图像增强等。对比于传统方法,基于CNN的一些方法极大地改善了图像增强的质量。现有的方法大多是有监督的学习,对于一张原始图像和一张目标图像,学习它们之间的映射关系,来得到增强后的图像。但是这样的数据集比较少,很多都是人为调整的,因此需要自监督或弱监督的方法来解决这一问题。本文介绍了近年来比较经典的图像增强模型,并分析其优缺点。
Matplotlib 是 Python 的一个绘图库,可以绘制出高质量的折线图、散点图、柱状图、条形图等等。它也是许多其他可视化库的基础。
andas是一个在数据科学中常用的功能强大的Python库。它可以从各种来源加载和操作数据集。当使用Pandas时,默认选项就已经适合大多数人了。但是在某些情况下,我们可能希望更改所显示内容的格式。所以就需要使用Pandas的一些定制功能来帮助我们自定义内容的显示方式。
本文接上一期《用word2vec解读延禧攻略人物关系》,从另外一个角度(色彩),对延禧的剧照及海报的颜色在数据上进行技术解读。通过从网上收集的剧照、海报图片等,经MCCQ算法及word2vec的训练,构建配色图谱,最后通过可视化的方式进行展示。
腾讯多媒体技术专栏 随着HDR(High Dynamic Range)相关技术的发展,越来越多的视频平台和设备厂商持续推动HDR内容的制作与传播。HDR可以提供更丰富的细节,更宽广的色域和更自然的色彩过渡。为呈现更高的图像品质,给体验者带来更具沉浸式的感受,腾讯多媒体实验室也对这一技术投入研究并推广落地。 本文主要介绍实验室在视频动态范围扩展这一视频增强技术方面的研究进展。在介绍相关算法的同时,文章简要分析和讨论扩展过程中需要解决的主要问题、可能的解决方案和存在的问题。 一、背景介绍 多媒体软硬
认真扫关于Jackson Pollock的画,源于最近看纽约时装周的设计师采访集,胡媛媛说自己的设计灵感,多来源于这位美国艺术家。
在感知部分的课程中,我们将首先介绍计算机视觉的基本应用领域;再进一步了解机器学习、神经网络和卷积神经网络的基础知识;随后我们将讨论感知模块在无人车中的具体任务;最后了解 Apollo 感知模块的体系结构和传感器融合的相关内容。
领取专属 10元无门槛券
手把手带您无忧上云