首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python可视化库

    现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策。那么数据有什么价值呢?用什么样的手段才能把数据的价值直观而清晰的表达出来? 答案是要提供像人眼一样的直觉的、交互的和反应灵敏的可视化环境。数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息,直观、形象地显示海量的数据和信息,并进行交互处理。 数据可视化的应用十分广泛,几乎可以应用于自然科学、工程技术、金融、通信和商业等各种领域。下面我们基于Python,简单地介绍一下适用于各个领域的几个实用的可视化库,快速带你入门!!

    02

    「 泛政务设计 」可视化色彩体系的配色方法探索

    图表是中后台产品最常见的界面信息元素之一,能够直观地展示数据、支撑观点。因大脑对视觉信息的处理优于对文本的处理,所以把数据进行可视化,可以更容易的解释数据模式、趋势、统计规律和数据相关性,也让视觉上也更丰富、美观。 图表的色板是传达信息、美感和情感的重要元素之一。配色不仅要清晰、准确传达信息,给予用户基本的美感,同时需要在多种颜色中,兼顾品牌感,使图表配色不脱离整体的品牌气质。 那是否有什么方法来指导辅助色的建立呢?本文总结了政务类产品在可视化图表配色上的一些探索思路和实践方法。 设计背景与目标 1. 现状

    06

    数据扩充与数据预处理

    常用的数据扩充方式有:图像水平翻转(horizontally flipping)和随机扣取(random crops),随机抠取操作一般用较大(约 0.8 至 0.9 倍原图大小)的正方形  在原图的随机位置处抠取图像块(image patch/crop),每张图像随机抠取的次数决定了数据集扩充的倍数。其他的数据扩充方式还有尺度变换(scaling)、旋转(rotating)等,从而增加卷积神经网络对物体尺度和方向上的鲁棒性。  在此基础上,对原图或已变换的图像(或图像块)进行色彩抖动(color jittering)也是一种常用的数据扩充手段。色彩抖动是在 RGB 颜色空间对原有 RGB 色彩分布进行轻微的扰动,也可在 HSV 颜色空间尝试随机改变原有的饱和度和明度(即,改变 S 和 V 通道的值)或对色调进行微调(小范围改变该通道的值)。  在实际项目中,往往会将上述几种方式叠加使用,将图像数据扩充至原有数量的数倍甚至数十倍。

    02

    基于深度学习的图像增强综述

    图像增强的定义非常广泛,一般来说,图像增强是有目的地强调图像的整体或局部特性,例如改善图像的颜色、亮度和对比度等,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,提高图像的视觉效果。传统的图像增强已经被研究了很长时间,现有的方法可大致分为三类,空域方法是直接对像素值进行处理,如直方图均衡,伽马变换;频域方法是在某种变换域内操作,如小波变换;混合域方法是结合空域和频域的一些方法。传统的方法一般比较简单且速度比较快,但是没有考虑到图像中的上下文信息等,所以取得效果不是很好。 近年来,卷积神经网络在很多低层次的计算机视觉任务中取得了巨大突破,包括图像超分辨、去模糊、去雾、去噪、图像增强等。对比于传统方法,基于CNN的一些方法极大地改善了图像增强的质量。现有的方法大多是有监督的学习,对于一张原始图像和一张目标图像,学习它们之间的映射关系,来得到增强后的图像。但是这样的数据集比较少,很多都是人为调整的,因此需要自监督或弱监督的方法来解决这一问题。本文介绍了近年来比较经典的图像增强模型,并分析其优缺点。

    06
    领券