首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    在tf.keras中,这些函数通常通常只是调用对应的TensorFlow操作。如果你想写一些可以迁移到其它Keras实现上,就应该使用这些Keras函数。...此时使用Huber损失(第10章介绍过)就比MSE好多了。目前官方Keras API中没有Huber损失,但tf.keras有(使用类keras.losses.Huber的实例)。...对于训练中的每个批次,Keras会调用函数huber_fn()计算损失,用损失来做梯度下降。另外,Keras会从一开始跟踪总损失,并展示平均损失。 在保存这个模型时,这个自定义损失会发生什么呢?...例如,可以在构造器中创建一个keras.metrics.Mean对象,然后在call()方法中调用它,传递给它recon_loss,最后通过add_metric()方法,将其添加到模型上。...在TensorFlow 2 中,图还在,但不是核心了,使用也简单多了。

    5.3K30

    【综述专栏】损失函数理解汇总,结合PyTorch和TensorFlow2

    在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。...使用版本: TensorFlow2.3 PyTorch1.7.0 ? ?...在分类问题模型中(不一定是二分类),如逻辑回归、神经网络等,在这些模型的最后通常会经过一个sigmoid函数(softmax函数),输出一个概率值(一组概率值),这个概率值反映了预测为正类的可能性(一组概率值反应了所有分类的可能性...默认:mean 06 余弦相似度 余弦相似度是机器学习中的一个重要概念,在Mahout等MLlib中有几种常用的相似度计算方法,如欧氏相似度,皮尔逊相似度,余弦相似度,Tanimoto相似度等。...默认:mean 07 总结 上面这些损失函数是我们在日常中经常使用到的,我将TensorFlow和PyTorch相关的API都贴出来了,也方便查看,可以作为一个手册文章,需要的时候点出来看一下。

    1.8K20

    ·TensorFlow&Keras GPU使用技巧

    [开发技巧]·TensorFlow&Keras GPU使用技巧 ?...1.问题描述 使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误。...首先介绍下TensorFlow&Keras GPU使用的机制:TensorFlow&Keras会在有GPU可以使用时,自动将数据与运算放到GPU进行训练(这个不同于MXNet与PyTorch处理方式不同...欢迎大家在评论区留言发布自己看法和解读。。 4.如何在多张GPU卡上使用Keras 我们建议有多张GPU卡可用时,使用TnesorFlow后端。...分布式 keras的分布式是利用TensorFlow实现的,要想完成分布式的训练,你需要将Keras注册在连接一个集群的TensorFlow会话上: server = tf.train.Server.create_local_server

    1.5K20

    在tensorflow2.2中使用Keras自定义模型的指标度量

    使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标 Keras对基于DNN的机器学习进行了大量简化,并不断改进。...这里,我们将展示如何基于混淆矩阵(召回、精度和f1)实现度量,并展示如何在tensorflow 2.2中非常简单地使用它们。...我们在这里讨论的是轻松扩展keras.metrics的能力。用来在训练期间跟踪混淆矩阵的度量,可以用来跟踪类的特定召回、精度和f1,并使用keras按照通常的方式绘制它们。...在训练中获得班级特定的召回、精度和f1至少对两件事有用: 我们可以看到训练是否稳定,每个类的损失在图表中显示的时候没有跳跃太多 我们可以使用一些技巧-早期停止甚至动态改变类权值。...由于tensorflow 2.2,可以透明地修改每个训练步骤中的工作(例如,在一个小批量中进行的训练),而以前必须编写一个在自定义训练循环中调用的无限函数,并且必须注意用tf.功能启用自动签名。

    2.5K10

    【tensorflow2.0】损失函数losses

    (Objective = Loss + Regularization) 对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel_regularizer 和 bias_regularizer...损失函数在模型编译时候指定。对于回归模型,通常使用的损失函数是平方损失函数 mean_squared_error。...import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import layers,models...也可以对tf.keras.losses.Loss进行子类化,重写call方法实现损失的计算逻辑,从而得到损失函数的类的实现。 下面是一个Focal Loss的自定义实现示范。...Focal Loss是一种对binary_crossentropy的改进损失函数形式。 在类别不平衡和存在难以训练样本的情形下相对于二元交叉熵能够取得更好的效果。

    1.7K10

    损失函数losses

    TensorFlow的中阶API主要包括: 数据管道(tf.data) 特征列(tf.feature_column) 激活函数(tf.nn) 模型层(tf.keras.layers) 损失函数(tf.keras.losses...) 评估指标(tf.keras.metrics) 优化器(tf.keras.optimizers) 回调函数(tf.keras.callbacks) 如果把模型比作一个房子,那么中阶API就是【模型之墙...(Objective = Loss + Regularization) 对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel_regularizer 和 bias_regularizer...损失函数在模型编译时候指定。对于回归模型,通常使用的损失函数是平方损失函数 mean_squared_error。...二,损失函数和正则化项 对于keras模型,目标函数中的正则化项一般在各层中指定,损失函数在模型编译时候指定。 ? ? 三,内置损失函数 内置的损失函数一般有类的实现和函数的实现两种形式。

    1.4K10

    Keras模型转TensorFlow格式及使用

    由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow...模型是一个包含了网络结构和权重的h5文件,那么使用下面的命令就可以了: python keras_to_tensorflow.py --input_model="path/to/keras/model.h5...在我改进的代码中,一个是适配python 2,另一个就是会输出输入层与输出层的名字,而这个是在你使用模型的时候需要的,运行我的代码后如果成功则输出如下: begin===================...使用TensorFlow模型 转换后我们当然要使用一下看是否转换成功,其实也就是TensorFlow的常见代码,如果只用过Keras的,可以参考一下: #!...feed_dict={"input_1:0": img}) # 执行得到结果 pred_index = res[0][0] print('Predict:', pred_index) 在代码中可以看到

    1.2K20

    指南:使用Keras和TensorFlow探索数据增强

    数据扩充是一种用于通过使用裁剪、填充、翻转等技术来增加数据量的策略。 数据扩充使模型对较小的变化更鲁棒,因此可以防止模型过度拟合。...将扩充后的数据存储在内存中既不实际也不高效,这就是Keras的Image Data Generator类(也包含在TensorFlow的高级API:tensorflow.keras中)发挥作用的地方。...下面是一个辅助脚本,我们将使用它来可视化显示使用Image Data Generator类可以实现的所有功能。...from tensorflow.keras.preprocessing.image import ImageDataGenerator from matplotlib.pyplot import imread...这与旋转不同,因为在Shear Intensity中,我们固定一根轴,将图像按照一定的角度进行拉伸,即Shear Intensity。这会在图像中产生某种“拉伸”,这在旋转中是无法看到的。

    1.8K31
    领券