原文地址:https://machinelearningmastery.com/timedistributed-layer-for-long-short-term-memory-networks-in-python/
How to Use the TimeDistributed Layer for Long Short-Term Memory Networks in Python 如何在Python中将TimeDistributed层用于Long Short-Term Memory Networks Long Short-Term Memory Networks或LSTM是一种流行的强大的循环神经网络(即RNN)。 对于任意的序列预测(sequence prediction )问题,配置和应用起来可能会相当困难,即使在P
回忆起我第一次接触人工智能的时候,我清楚地记得有些概念看起来是多么令人畏惧。阅读一个关于神经网络是什么的简单解释时,很容易阅读到的是一篇科学论文,其中每一句话都是一个包含很多你从未见过的符号的公式。虽然这些论文有着令人难以置信的洞察力和深度可以帮助你建立你的专业知识,但是开始写你的第一个神经网络其实比那些听起来容易得多!
在本文中,将使用Prajna Bhandary创建的口罩数据集。此数据集由属于1376个的图像with mask和without mask2类。
Keras是一个非常受欢迎的构建和训练深度学习模型的高级API。它用于快速原型设计、最前沿的研究以及产品中。虽然现在的TensorFlow已经支持Keras,在2.0中,我们将Keras更紧密地集成到TensorFlow平台。
文 / Josh Gordon, Google Developer Advocate
本文是对The 5 Step Life-Cycle for Long Short-Term Memory Models in Keras的复现与解读,新手博主,边学边记,以便后续温习,或者对他人有所帮助
使用Python的Keras库可以很容易创建和评测深度学习神经网络,但是您必须遵循严格的模型生命周期。
可能没人比François Chollet更了解Keras吧?作为Keras的开发者François对Keras可以说是了如指掌。他可以接触到Keras的更新全过程、获得最一手的资源。同时他本人也非常乐于分享、教导别人去更好的学习TensorFlow和Keras。
Francois Chollet在他的“深度学习Python”一书中概述了与Keras开发神经网络的概述。 通过本书前面的一个简单的MNIST示例,Chollet将网络构建过程简化为与Keras直接相关的4个主要步骤。
深度学习已经占据了解决复杂问题的大多数领域,地理空间领域也不例外。文章的标题让您感兴趣,因此希望熟悉卫星数据集 ; 目前,Landsat 5 TM。机器学习(ML)算法如何工作的知识很少,将帮助快速掌握这本动手教程。对于那些不熟悉ML概念的人,简而言之,它是建立一个实体的一些特征(特征或X)与其他属性(值或标签或Y)之间的关系 - 提供了大量的例子(标记数据) )到模型,以便从中学习,然后预测新数据(未标记数据)的值/标签。这对于机器学习来说已经足够理论了!
年初,OpenAI 推出文本-视频生成模型 Sora,只需输入提示文本描述,或输入一张图片,Sora 就能生成类似电影大片的逼真场景视频,前所未有的新奇观感,让大众直呼「现实不存在了」。
keras中的主要数据结构是model(模型),它提供定义完整计算图的方法。通过将图层添加到现有模型/计算图,我们可以构建出复杂的神经网络。
想要真的了解深度学习,除了看视频,拿数据和算力真枪实弹的练手可能比各种理论知识更重要。
原文地址:https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
当我们说卷积神经网络(CNN)时,通常是指用于图像分类的2维CNN。但是,现实世界中还使用了其他两种类型的卷积神经网络,即1维CNN和3维CNN。在本指南中,我们将介绍1D和3D CNN及其在现实世界中的应用。我假设你已经大体上熟悉卷积网络的概念。
在使用 TensorFlow 进行深度学习任务时,经常会遇到一些警告信息,其中之一就是 "WARNING:tensorflow:From"。这个警告信息通常出现在使用 tensorflow.contrib.learn.python.learn 模块中的 read_data_sets 函数时。本篇博客将介绍如何解决这个警告信息。
图像识别是深度学习技术的一个普遍具有的功能。
定位器地图只有一项工作:显示某物在哪里。这意味着它只需要很少的信息:只需要一个特征区域的指示,以及足够的地理背景,让人们了解它在世界上的位置。保持定位器地图尽可能简单,以防止它在视觉上与主地图或主要故事竞争。
目前为止,介绍的神经网络模型都是通过Sequential模型来实现的。Sequential模型假设神经网络模型只有一个输入一个输出,而且模型的网络层是线性堆叠在一起的。
对于许多科学家、工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架。但indus.ai公司机器学习工程师George Seif认为,TF并不是非常的用户友好。
Deep Learning Studio是自2017年1月以来第一个强健的深度学习平台,有云计算和桌面计算两个版本,该平台拥有可视化界面。该平台提供了数据提取,模型开发,训练,配置和管理等全面解决方案。Deep Learning Studio由Deep Cognition开发,这是一家人工智能软件公司,它简化了开发和配置人工智能的过程。AI工程师,数据科学家和全球的研究人员免费使用AI软件平台Deep Learning Studio。通过使用Deep Learning Studio,从开发人员到工程师或研究人员,任何人都可以通过与TensorFlow,MXNet和Keras的强大集成获得快速开发和配置深度学习解决方案的能力。
layer.get_weights(): # 以Numpy矩阵的形式返回层的权重。
你是否想知道LSTM层学到了什么?有没有想过是否有可能看到每个单元如何对最终输出做出贡献。我很好奇,试图将其可视化。在满足我好奇的神经元的同时,我偶然发现了Andrej Karpathy的博客,名为“循环神经网络的不合理有效性”。如果你想获得更深入的解释,建议你浏览他的博客。
谷歌团队 2015 年发布的 TensorFlow 框架是目前机器学习领域最流行的框架之一。虽然后起之秀 PyTorch 奋起直追,但 TensorFlow 框架的使用者仍然众多。
对于许多数据科学家、工程师和开发人员来说,TensorFlow是他们深度学习框架的第一选择。TensorFlow 1.0于2017年2月发布,至少可以说,它不是非常用户友好。
一:背景描述 每次Qzone经历大的改版,我们都会为用户诚意奉上精彩的欢迎动画,此次6.0版本也不例外。新版增加了空间秀、侧边栏入口转移至发现tab,当然,还有一些神奇的小功能点的优化,等着大家自己去发现哦,废话不多说直接上动画。 【发现版本】 【空间秀版本】 二:如何让动画形式更具吸引力 在设计之初,我们希望可以给动画更多可能性,因此,参考了大量的国外广告、MG动画以及app推广动画案例。在创新的同时,还要与之前的版本有“继承和延续”的概念。例如:5.0以纯矢量动画为主,5.5以场景实拍+动态元素
在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。我们演示有关温度预测问题的三个概念,我们使用建筑物屋顶上的传感器的时间数据序列。
【导读】ResNet在2015年名声大噪,影响了2016年DL在学术界和工业界的发展方向。它对每一层的输入做一个reference,形成残差函数。残差用来设计解决深度网络退化问题,同时也解决了梯度消失
首先了解Keras的一个很好的途径就是通过 文档 Keras 中文文档地址: https://keras.io/zh/models/about-keras-models/
本文是根据自身构建深度学习模型总结而来,可能读起来比较干巴,但干货确实不少。闲话少叙,直接进入相关内容。
Keras 函数式 API 是定义复杂模型(如多输出模型、有向无环图,或具有共享层的模型)的方法。
该文章介绍了如何使用神经张量网络处理自然语言数据,包括文本分类、情感分析等任务。文章还探讨了如何通过多关系数据集训练神经张量网络,并给出了一个知识库应用案例。
选自Medium 作者:Mike Shi 机器之心编译 参与:Pedro、刘晓坤 Tensorflow.js 是一个能在你的浏览器里运行的全新深度学习库。本文将会介绍从原生 Tiny YOLO Darknet 模型到 Keras 的转换,再到 Tensorflow.js 的转换,如何利用其作一些预测,在编写 Tensorflow.js 遇到的一些问题,以及介绍使用联网摄像头/图像轻松地进行预测检测。 项目地址:https://github.com/ModelDepot/tfjs-yolo-tiny YOL
Pixelmator Pro for Mac是一种图像编辑器,Pixelmator Pro旨在使每个人都可以使用最强大的专业图像编辑工具。拥有大量用于编辑和修饰照片,创建图形设计,绘画,绘制矢量图形以及添加令人惊叹的效果的工具。
基于TensorFlow2.x的框架,使用PYthon编程语言,实现对服装图像进行分类。
选自freecodecamp 作者:Emil Wallnér 机器之心编译 使用神经网络对图片进行风格化渲染是计算机视觉领域的热门应用之一。本文将向你介绍一种简单而有效的黑白图片上色方法,仅需 100 行代码,你也可以搭建自己的神经网络,几秒钟内让计算机自动完成手动工作需要几个月的任务。 今年 7 月,Amir Avni 用神经网络向 Reddit 的 Colorization 社区宣战——那是一个为历史黑白照片上色的版面,用户们通常使用的工具是 Photoshop。 社区用户们惊讶于 Amir 的深度
在一个排列不变性的数据上神经网络是困难的。拼图游戏就是这种类型的数据,那么神经网络能解决一个2x2的拼图游戏吗? 什么是置换不变性(Permutation Invariance)? 如果一个函数的输出
前几天忙着参加一个AI Challenger比赛,一直没有更新博客,忙了将近一个月的时间,也没有取得很好的成绩,不过这这段时间内的确学到了很多,就在决赛结束的前一天晚上,准备复现使用一个新的网络UPerNet的时候出现了一个很匪夷所思,莫名其妙的一个问题。谷歌很久都没有解决,最后在一个日语网站上看到了解决方法。
在最近的一篇文章中,我们提到,TensorFlow 2.0经过重新设计,重点关注开发人员的工作效率、简单性和易用性。
Pixelmator mac是一款图像处理软件,包含了全新的工作流以及更直观简单的编辑软件。它还采用了单窗口界面以及基于机器学习的智能图像编辑功能。
昨天,著名深度学习开源库 Keras 通过官方博客正式发布了全新版本:Keras 2。 根据官方介绍,此次更新的重点有两个: Keras 2 API 将作为 TensorFlow 框架的一部分直接向用户提供支持; Keras 2 API 经过了重新设计,将成为团队第一个长期支持(long-term-support)的 API。 Keras 表示:从 2015 年 3 月发布第一个版本以来,有数以百计的开发人员对 Keras 的开源代码做了完善和拓展,数以千计的热心用户在社区对 Keras 的发展做出了贡献
原文链接https://indico.io/blog/python-deep-learning-frameworks-reviewed/ 麦迪逊月 - 2017年1月31日 ---- 我最近偶然发现了我在“神经网络的最佳python库”这个主题的一个旧的数据科学堆栈交换的答案,它让我深感python深度学习生态系统在过去的两年半内的快速发展。我在2014年七月推荐的一个库pylearn2,现在已经不再被积极地开发和维护,并且一大批深度学习的库已经占据它的位置。其实每一个库都有它的优势和弱点。我们已经使
如今,上色都是人手工用Photoshop做的,一张图片要花好几个月才能完成,需要进行大量调查研究,光是其中的一张脸就需要多达20层图层。但是,基于深度神经网络的自动着色机器人,可以几秒钟就实现PS几个月的效果,而且成效越来越惊人。 下面,我们将分三个步骤展示如何打造你自己的着色神经网络。第一部分讲解核心逻辑。我们将构建一个40行代码的神经网络,作为“Alpha”着色机器人,这个代码片段实际上没有太多的魔法,但可以让你熟悉基本操作。 然后,我们将创建一个可以泛化的神经网络——“Beta”版本。Beta机器人能
在人工智能研究的大潮中,如何模拟人类对于静态或动态目标的有效识别预测一直是研究热点,通过智能技术实现对于目标特征的学习并对特定目标进行快速识别,预测得出目标识别概率,实现基于深度学习模型在复杂背景、不确定外部干扰下的高精度、实时识别目标,能够保持或者优于有丰富经验人员的识别效果。
在本文中,我们将学习如何使用keras,用手写数字图像数据集(即MNIST)进行深度学习。本文的目的是为了让大家亲身体验并熟悉培训课程中的神经网络部分。
领取专属 10元无门槛券
手把手带您无忧上云