首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    让智能体主动交互,DeepMind提出用元强化学习实现因果推理

    发现和利用环境中的因果结构是智能体面临的一大关键挑战。这里我们探索了是否可通过元强化学习来实现因果推理(cause reasoning)。我们使用无模型强化学习训练了一个循环网络来求解一系列包含因果结构的问题。我们发现,训练后的智能体能够在全新的场景中执行因果推理,从而获得奖励。智能体可以选择信息干预、根据观察数据得出因果推论以及做出反事实的预测。尽管也存在已有的形式因果推理算法,但我们在这篇论文中表明这样的推理可以由无模型强化学习产生,并提出这里给出的更多端到端的基于学习的方法也许有助于在复杂环境中的因果推理。通过让智能体具备执行——以及解释——实验的能力,本研究也能为强化学习中的结构化探索提供新的策略。

    04

    深度学习500问——Chapter10:迁移学习(4)

    流行学习自从2000年在Science上被提出来以后,就成为了机器学习和数据挖掘领域的热门问题。它的基本假设是,现有的数据是从一个高维空间中采样出来的,所以,它具有高维空间中的低维流形结构。流形就是一种几何对象(就是我们能想象能观测到的)。通俗点说就是,我们无法从原始的数据表达形式明显看出数据所具有的结构特征,那我把它想象成是处在一个高维空间,在这个高维空间里它是有个形状的。一个很好的例子就是星座。满天星星怎么描述?我们想象它们在一个更高维的宇宙空间里是有形状的,这就有了各自星座,比如织女座、猎户座。流形学习的经典方法有lsomap、locally linear embedding、laplacian eigenmap等。

    01

    AI的TCPIP协议I:超维计算(向量符号体系结构)综述,第一部分:模型和数据转换

    这两个部分的综合调查致力于一个计算框架,最常见的名称是超维计算和向量符号架构(HDC/VSA)。这两个名称都指的是一系列计算模型,这些模型使用高维分布式表示,并依靠其关键操作的代数属性来结合结构化符号表示和矢量分布式表示的优点。HDC/VSA家族中值得注意的模型是张量积表示、全息简化表示、乘加置换、二进制喷溅码和稀疏二进制分布表示,但还有其他模型。HDC/VSA是一个高度跨学科的领域,涉及计算机科学、电子工程、人工智能、数学和认知科学。这一事实使得对该地区进行全面的概述具有挑战性。然而,由于近年来加入该领域的新研究人员激增,对该领域进行全面调查的必要性变得极其重要。因此,在该领域的其他方面中,第一部分调查了重要的方面,例如:HDC/VSA的已知计算模型和各种输入数据类型到高维分布式表示的转换。本调查的第二部分[Kleyko et al., 2021c]致力于应用、认知计算和架构,以及未来工作的方向。这份调查对新人和从业者都有用。

    02
    领券