首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pytorch的C++端(libtorch)在Windows中的使用

    前言 填一个之前的坑啊,本篇的姊妹篇——利用Pytorch的C++前端(libtorch)读取预训练权重并进行预测 这篇文章中已经说明了如何在Ubuntu系统中使用libtorch做预测,当初也有朋友问我如何在...Windows版本的libtorch,这下就节省了我们编译Pytorch的时间,直接可以拿来使用,只要稍微配置一下就可以在Windows跑起libtorch了,没有想象中那么多的步骤,大可放心。...关于模型 这里还有一点需要注意,使用libtorch导入的模型必须是和libtorch相匹配版本的Pytorch导出的模型,也就是说如果我拿我之前在linux端导出的模型(之前我在linux端导出的模型使用的...simnet.exe放到一个文件夹中,这时,我们点击simnet.exe就可以直接运行了: 后记 libtorch在WIndow端的使用也不是很复杂,我们根据运行环境不同下载不同版本的libtorch...(CPU和GPU),然后使用cmake配置后,利用VS进行编译就可以直接使用,其中遇到的问题大部分时环境的问题,我们的代码并不需要修改,是可以跨平台的,我也在VS2015和VS2017中进行了测试,都是可以的

    1.8K40

    pytorch的安装及其在pycharm中的使用「建议收藏」

    1.首先配置Anaconda虚拟环境 在Anaconda Prompt中输入 conda create -n pytorch python==3.7 2.在该环境中安装pytorch 因为前面已经安装了...3.在pytorch-gpu环境中验证是否安装成功 首先在命令行中输入python进入python环境,然后输入命令验证pytorch是否安装成功: import torch print(torch...输入命令: print(torch.cuda.is_available()) 4.在pycharm中使用pytorch 同样可以验证 这两个环境在这里切换,因为tensorflow-gpu...需要的python版本是3.6,所以没有把tensorflow和pytorch装在一个环境中。...如果要卸载pytorch的话,进入相应环境在命令行中输入如下命令: pip uninstall torch 如果使用的conda命令安装的pytorch,则用如下命令: conda uninstall

    4K40

    在Pytorch中构建流数据集

    要解决的问题 我们在比赛中使用数据管道也遇到了一些问题,主要涉及速度和效率: 它没有利用Numpy和Pandas在Python中提供的快速矢量化操作的优势 每个批次所需的信息都首先编写并存储为字典,然后使用...片段相邻的情况下允许我们使用移位来创建“新的”样本。 但是,由于每个音轨由不同数量的片段组成,因此从任何给定音轨生成的增补数目都会不同,这使我们无法使用常规的Pytorch Dataset 类。...这里就需要依靠Pytorch中的IterableDataset 类从每个音轨生成数据流。...我们使用了Numpy和Pandas中的一堆技巧和简洁的特性,大量使用了布尔矩阵来进行验证,并将scalogram/spectrogram 图转换应用到音轨中连接的片段上。...结论 在Pytorch中学习使用流数据是一次很好的学习经历,也是一次很好的编程挑战。这里通过改变我们对pytorch传统的dataset的组织的概念的理解,开启一种更有效地处理数据的方式。

    1.4K40

    Pytorch中DataLoader的使用

    前言 最近开始接触pytorch,从跑别人写好的代码开始,今天需要把输入数据根据每个batch的最长输入数据,填充到一样的长度(之前是将所有的数据直接填充到一样的长度再输入)。...加载数据 pytorch中加载数据的顺序是: ①创建一个dataset对象 ②创建一个dataloader对象 ③循环dataloader对象,将data,label拿到模型中去训练 dataset...return len(self.x) dataloader 参数: dataset:传入的数据 shuffle = True:是否打乱数据 collate_fn:使用这个参数可以自己操作每个...data[:-1]) #数据data[:-1] loss = F.cross_entropy(out, data[-1])# 最后一列是标签 写在最后:建议像我一样刚开始不太熟练的小伙伴,在处理数据输入的时候可以打印出来仔细查看

    4.9K30

    在MNIST数据集上使用Pytorch中的Autoencoder进行维度操作

    这将有助于更好地理解并帮助在将来为任何ML问题建立直觉。 ? 首先构建一个简单的自动编码器来压缩MNIST数据集。使用自动编码器,通过编码器传递输入数据,该编码器对输入进行压缩表示。...通常,编码器和解码器将使用神经网络构建,然后在示例数据上进行训练。 但这些编码器和解码器到底是什么? ? 自动编码器的一般结构,通过内部表示或代码“h”将输入x映射到输出(称为重建)“r”。...在下面的代码中,选择了encoding_dim = 32,这基本上就是压缩表示!...由于要比较输入和输出图像中的像素值,因此使用适用于回归任务的损失将是最有益的。回归就是比较数量而不是概率值。...检查结果: 获得一批测试图像 获取样本输出 准备要显示的图像 输出大小调整为一批图像 当它是requires_grad的输出时使用detach 绘制前十个输入图像,然后重建图像 在顶行输入图像,在底部输入重建

    4.1K20

    如何针对数据不平衡做处理?

    这与 数据分布不一致所带来的影响不太一样,前者会导致你的模型在训练过程中无法拟合所有类别的数据,也就是会弄混,后者则更倾向于导致模型泛华能力减弱。...因为不同的任务场景下数据特征依赖不同,比如高斯噪声,在天池铝材缺陷检测竞赛中,如果高斯噪声增加不当,有些图片原本在采集的时候相机就对焦不准,导致工件难以看清,倘若再增加高斯模糊属性,基本就废了。...常见的采样方式分为两种:过采样和欠采样,效果图如下 (图片来源见参考文献 2): 原理就是 “删图片” 和 “增加图片”,从而保证在训练过程中类别之间的数据量大致相同。...2.2 pytorch 权重采样 pytorch 在 DataLoader () 的时候可以传入 sampler ,这里只说一下加权采样 torch.utils.data.WeightedRandomSampler...损失函数加权 还有一种方法是在计算损失函数过程中,对每个类别的损失做加权,具体的方式如下 weights = torch.FloatTensor([1,1,8,8,4]) criterion = nn.BCEWithLogitsLoss

    1.5K40

    YOLOv10在PyTorch和OpenVINO中推理对比

    概述 实时目标检测旨在以较低的延迟准确预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于这项研究的前沿。...一对多头:在训练过程中为每个对象生成多个预测,以提供丰富的监督信号并提高学习准确性。 一对一头:在推理过程中为每个对象生成一个最佳预测,无需 NMS,从而减少延迟并提高效率。...现在只需使用它! OpenVINO VS PyTorch 现在让我们做简单的性能比较!...在我的计算机上,配备 Intel(R) Core(TM) i7–7560U CPU @ 2.40GHz,我将首先使用 PyTorch 格式的模型,即 640x640 和 Half,即 fp16 from...,我首先使用 PyTorch 运行模型,结果如下: 单帧测试时间 70~100ms。

    1K10

    pytorch安装、环境搭建及在pycharm中的设置

    pytorch安装、环境搭建及在pycharm中设置 这两天同学在问我pytorch的安装,因为自己的已经安装好了,但是好像又有点遗忘,之前也是花了很大的功夫才弄明白,所以整理的比较详细。...原因是我并没有把python安装在本机,而是下载了Anaconda Navigator,它是Anaconda发行包中包含的桌面图形界面,可以用来方便地启动应用、方便的管理conda包、环境和频道,不需要使用命令行的命令...接下来就是在官网下载和自己设备匹配的pytorch。...三、pytorch在pycharm中的设置 实际上anaconda中有自带的编译器,Jupyter notebook和Spyter,但是为了项目更好的管理,也可以选择下载pycharm。...——project interpreter——add 注意刚才创建的pytorch环境会自动保存在Anaconda\envs\路径下,很容易找到,至此,j就可以在pycharm中使用pytorch

    4.9K40

    TensorFlow与PyTorch在Python面试中的对比与应用

    本篇博客将深入浅出地探讨Python面试中与TensorFlow、PyTorch相关的常见问题、易错点,以及如何避免这些问题,同时附上代码示例以供参考。一、常见面试问题1....框架基础操作面试官可能会询问如何在TensorFlow与PyTorch中创建张量、定义模型、执行前向传播等基础操作。...数据加载与预处理面试官可能询问如何使用TensorFlow与PyTorch的数据加载工具(如tf.data.Dataset、torch.utils.data.DataLoader)进行数据加载与预处理。...忽视动态图与静态图:理解TensorFlow的静态图机制与PyTorch的动态图机制,根据任务需求选择合适的框架。忽视GPU加速:确保在具备GPU资源的环境中合理配置框架,充分利用硬件加速。...忽视版本兼容性:关注框架版本更新,了解新特性与潜在的API变动,避免代码在不同版本间出现兼容性问题。结语掌握TensorFlow与PyTorch是成为一名优秀Python深度学习工程师的必备技能。

    47300

    8 | PyTorch中自动计算梯度、使用优化器

    前面主要在于机制的理解,我们实际上用手动的方式实现了一遍模型求解的过程,主要的改进就是使用了PyTorch里面的tensor数据结构,但是这还不够,PyTorch提供了很多强大的功能,当然不只是在处理tensor...在PyTorch中,可以存储张量的生产路径,包括一个张量经过了何种计算,得到的结果有哪些,借助这个能力,对于我们用到的tensor,就可以找到它的爷爷tensor和它的爷爷的爷爷tensor,并且自动对这些操作求导...属性中。...这里涉及到一个计算图的概念,大意是在PyTorch底层为tensor及运算构建了一个图关系,前面说到的关于反向传播也都是基于这个图上的存储关系进行的。...接下来让我们使用优化器来实现梯度下降。我们使用了一个叫SGD的优化器,这个称为随机梯度下降,这个方法是每次计算只随机采用一个样本,大大降低了计算成本。

    72820

    LSTM:在Python中使用PyTorch使用LSTM进行时间序列预测

    在我早些时候的文章中,我展示了如何运用Keras库并利用LSTM进行时间序列分析,以预测未来的股票价格。将使用PyTorch库,它是最常用的深度学习的Python库之一。...如果你还没有安装PyTorch,你可以通过以下pip命令来安装。 $ pip install pytorch 复制代码 数据集和问题定义 我们将使用Seaborn库的内建数据集。...一年内旅行的乘客数量是波动的,这是有道理的,因为在夏季或冬季休假期间,旅行的乘客数量比一年中的其他时间增加。...我们将对数据集进行最小/最大缩放,使数据在一定的最小值和最大值范围内正常化。我们将使用sklearn.preprocessing模块中的MinMaxScaler类来扩展我们的数据。...你可以使用任何序列长度,这取决于领域知识。然而,在我们的数据集中,使用12的序列长度是很方便的,因为我们有月度数据,一年有12个月。如果我们有每日数据,更好的序列长度是365,即一年中的天数。

    2.7K20

    在 PyTorch 中实现可解释的神经网络模型

    这些模型不仅提高了模型的透明度,而且通过在训练过程中结合高级人类可解释的概念(如“颜色”或“形状”),培养了对系统决策的新信任感。...❞ 在这篇博文[1]中,我们将深入研究这些技术,并为您提供使用简单的 PyTorch 接口实现最先进的基于概念的模型的工具。...为了捕捉这些特征的本质,我们将使用概念编码器将它们映射为两个有意义的概念,表示为“A”和“B”。我们任务的目标是预测“A”和“B”的异或 (XOR)。...通过这个例子,您将更好地理解概念瓶颈如何在实践中应用,并见证它们在解决具体问题方面的有效性。...往期推荐 如何在 Linux 中列出 Systemd 下所有正在运行的服务 GPT 模型的工作原理 你知道吗? Backbone 在神经网络中意味着什么?

    34140
    领券