首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

梯度下降算法思想

根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!...梯度是微积分中一个很重要的概念,之前提到过梯度的意义 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向...我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。...我们假设初始的起点为: 初始的学习率为: 函数的梯度为: 进行多次迭代: 我们发现,已经基本靠近函数的最小值点 梯度下降算法的实现 下面我们将用python实现一个简单的梯度下降算法。...首先,我们需要定义一个代价函数,在此我们选用均方误差代价函数 此公示中 m是数据集中点的个数 ½是一个常量,这样是为了在求梯度的时候,二次方乘下来就和这里的½抵消了,自然就没有多余的常数系数,方便后续的计算

1.2K20

机器学习笔记之梯度下降算法原理讲解

0x00 概述 梯度下降(gradient descent)在机器学习中应用十分的广泛,不论是在线性回归还是Logistic回归中,它的主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。...根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!...梯度是微积分中一个很重要的概念,之前提到过梯度的意义 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向...**我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。...此公式中 m是数据集中数据点的个数,也就是样本数 ½是一个常量,这样是为了在求梯度的时候,二次方乘下来的2就和这里的½抵消了,自然就没有多余的常数系数,方便后续的计算,同时对结果不会有影响 y 是数据集中每个点的真实

1.9K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python中bool函数用法_在python中bool函数的取值方法「建议收藏」

    大家好,又见面了,我是你们的朋友全栈君。 bool是Boolean的缩写,只有真(True)和假(False)两种取值 bool函数只有一个参数,并根据这个参数的值返回真或者假。...>>> bool(0) False >>> bool(1) True >>> bool(-1) True >>> bool(21334) True 2.当对字符串使用bool函数时,对于没有值的字符串(...>>> bool(”) False >>> bool(None) False >>> bool(‘asd’) True >>> bool(‘hello’) True 3.bool函数对于空的列表,字典和元祖返回...>>> x = raw_input(‘Please enter a number :’) Please enter a number :4 >>> bool(x.strip()) True 以上这篇在python...中bool函数的取值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。

    2.9K20

    深入浅出--梯度下降法及其实现

    根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!...image.png 上面的例子都是单变量的微分,当一个函数有多个变量的时候,就有了多变量的微分,即分别对每个变量进行求微分 ? image.png 梯度 梯度实际上就是多变量微分的一般化。...梯度是微积分中一个很重要的概念,之前提到过梯度的意义 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向...我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。...image.png 此公示中 m是数据集中点的个数 ½是一个常量,这样是为了在求梯度的时候,二次方乘下来就和这里的½抵消了,自然就没有多余的常数系数,方便后续的计算,同时对结果不会有影响 y 是数据集中每个点的真实

    96830

    一文读懂机器学习梯度下降法

    根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的 梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!...,就有了多变量的微分,即分别对每个变量进行求微分: img 梯度 梯度实际上就是多变量微分的一般化。...梯度是微积分中一个很重要的概念,之前提到过梯度的意义 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向...我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。...首先,我们需要定义一个代价函数,在此我们选用 均方误差代价函数 : img 此公示中 m 是数据集中点的个数 ½是一个常量,这样是为了在求梯度的时候,二次方乘下来就和这里的½抵消了,自然就没有多余的常数系数

    1K30

    ·梯度下降原理讲解

    根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!...梯度是微积分中一个很重要的概念,之前提到过梯度的意义 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向...我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。...image.png 我们发现,已经基本靠近函数的最小值点 ? image.png 梯度下降算法的实现 下面我们将用python实现一个简单的梯度下降算法。...image.png 此公示中 m是数据集中点的个数 ½是一个常量,这样是为了在求梯度的时候,二次方乘下来就和这里的½抵消了,自然就没有多余的常数系数,方便后续的计算,同时对结果不会有影响 y 是数据集中每个点的真实

    1K20

    机器学习之拉格朗日乘数法

    这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。...此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。...成为变量为 的函数将问题化为函数无条件极值问题; 2)在一般情形下,要从方程组(1)中解出 来是困难的,甚至是不可能的,因此上面求解方法往往是行不通的。...通常采用的拉格朗日乘数法,是免去解方程组(1)的困难,将求 的条件极值问题化为求下面拉格朗日函数的稳定点问题,然后根据所讨论的实际问题的特性判断出哪些稳定点是所求的极值的。...3)在给定的条件下,若是可以将未知数代换或是解出,则可以将条件极值转化为无条件极值,从而避免引入拉格朗日乘数的麻烦。

    2.1K20

    机器学习算法之线性回归的损失和优化

    根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!...百度百科:梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。...在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率。在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向。...梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的反方向一直走,就能走到局部的最低点!...同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以 α 的选择在梯度下降法中往往是很重要的!α 不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点! ?

    93920

    机器学习入门:梯度下降算法(上)

    根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是 找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!...1.2 梯度的概念 梯度是微积分中一个很重要的概念 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率; 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向...; 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。...梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的反方向一直走,就能走到局部的最低点!...(也可以沿梯度上升方向求解极大值) 线性回归的回归系数可以通过梯度下降算法找到损失函数的极小值得到 梯度下降中,学习率(Learning rate)是一个很重要的参数,它决定了在梯度下降迭代的过程中

    8510

    在ctypes的C共享库中调用Python函数

    概述 ctypes 是Python标准库中提供的外部函数库,可以用来在Python中调用动态链接库或者共享库中的函数,比如将使用大量循环的代码写在C语言中来进行提速,因为Python代码循环实在是太慢了...大致流程是通过 ctypes 来调用C函数,先将Python类型的对象转换为C的类型,在C函数中做完计算,返回结果到Python中。这个过程相对是比较容易的。...现在有个更复杂的情况,我想要在C代码中调用Python中的某些函数来完成C代码的计算,比如在C代码的sort函数中,采用Python中定义的函数来进行大小判断。...这个在Python中定义的函数在 ctypes 中称为回调函数 (callback function)。也就是说需要把Python函数当作变量传给C语言,想想还是有些难度。...然后在Python文件中定义这个回调函数的具体实现,以及调用共享库my_lib.so中定义的foo函数: # file name: ctype_callback_demo.py import ctypes

    42830

    还不了解梯度下降法?看完这篇就懂了!

    损失函数包含了若干个位置的模型参数,比如在多元线性回归中,损失函数: ,其中向量表示未知的模型参数,我们就是要找到使损失函数尽可能小的参数未知模型参数。...在学习简单线性回归时,我们使用最小二乘法来求损失函数的最小值,但是这只是一个特例。在绝大多数的情况下,损失函数是很复杂的(比如逻辑回归),根本无法得到参数估计值的表达式。...在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向 梯度指向误差值增加最快的方向,导数为...选方向在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因。如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点。...0xFF 总结 在机器学习的“三板斧”中,第三步的目标是让损失函数最小化,从而引出了梯度下降法,这一目前机器学习、深度学习解决最优化问题的算法中,最核心、应用最广的方法。

    2.6K40

    在Python中实现Excel的VLOOKUP、HLOOKUP、XLOOKUP函数功能

    事实上,我们可以使用相同的技术在Python中实现VLOOKUP、HLOOKUP、XLOOKUP或INDEX/MATCH等函数的功能。...图1 在Python中实现XLOOKUP 我们将使用pandas库来复制Excel公式,该库几乎相当于Python的电子表格应用程序。...在第一行中,我们用一些参数定义了一个名为xlookup的函数: lookup_value:我们感兴趣的值,这将是一个字符串值 lookup_array:这是源数据框架中的一列,我们正在查找此数组/列中的...中,在我们的例子中是xlookup。...根据设计,apply将自动传递来自调用方数据框架(系列)的所有数据。在我们的示例中,apply()将df1['用户姓名']作为第一个参数传递给函数xlookup。

    7.4K11

    机器学习_最优化

    在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率 2....在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向 梯度的方向实际就是函数在此点上升最快的方向!...典型:求函数z=f(x,y)在满足b(x,y)=0下的条件极值转化为函数F(x,y,\alpha)=f(x,y)+\alpha b(x,y)的无条件极值问题 列题:给定椭球:x^2/a^2+y^2/b^...在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。...后果:训练很难进行,不收敛了 loss过早地不再下降 精确度过早地不在提高 梯度消失 梯度消失: 一是在深层网络中; 二是采用了不合适的损失函数,比如sigmoid。

    69010

    线性回归原理

    确定损失函数之后, 我们通过求解损失函数的极小值来确定机器学习模型中的参数。...而梯度下降法则是沿着梯度的相反方向前进,这就好比我们在山上下行时选择最陡峭下降的路径。每一步,我们都根据当前位置的梯度调整步伐,以期逐步逼近最低点,即函数的最小值。...在多变量函数中,梯度是一个向量,有方向,梯度的方向就指出了函数在给定点的上升最快的方向 单变量函数的梯度下降 函数 f(x) = x^2。...经过多次迭代后,我们会发现 x 的值逐渐接近于0,因为函数 f(x) = x^2 在 x=0 处取得全局最小值  在下山类比中,学习率α就好比我们每一步走的距离。...在二维或者三维图像中,学习率α体现在每次更新后沿负梯度方向移动的距离上,直观地表现为从一个点到下一个点的直线段长度。

    14510

    梯度下降算法

    根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是 找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快。...1.2 梯度的概念 在单变量的函数中,梯度就是函数的微分,代表着函数在某个给定点的切线的斜率; 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向;...在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。...{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}]^T 在给定具体的参数一组取值之后,我们就能计算梯度表达式的取值,该值也被称为损失函数在某组参数取值下的梯度...在优化过程中,梯度下降法沿着函数下降最快的方向更新变量x x: 初始化的起点或当前点,表示我们开始搜索最小值的位置 alpha: 学习率(learning rate),它决定了每次迭代时x的更新步长。

    9501

    最小二乘法和梯度下降法有哪些区别? 以及梯度下降法Python实现

    相同 1.本质相同:两种方法都是在给定已知数据(independent & dependent variables)的前提下对dependent variables算出出一个一般性的估值函数。...在回归中样本量(n)会远大于变量数量(m),最小二乘法目的在于解决n个方程解m个未知数的问题。求极值的过程不是最小二乘法的重点,其重点在于平衡了n个样本得出m个方程进而去解m个未知参数。...(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来...都表示在已有的训练集上我们的拟合函数与y之间的残差,计算其平方损失函数作为我们构建的风险函数(参见最小二乘法及其Python实现) ?...批量梯度下降BGD 按照传统的思想,我们需要对上述风险函数中的每个 ? 求其偏导数,得到每个 ? 对应的梯度 ? 这里 ? 表示第i个样本点 ? 的第j分量,即h(θ)中的 ?

    3.7K10

    ML算法——梯度下降随笔【机器学习】

    梯度方向:→|向右|正向 ←|向左|反方向 梯度方向是指函数在该点处变化率最大(上升或下降最快)的方向。在这个梯度方向来迭代更新参数,函数值可以更快的下降到局部最小值。...梯度的模长为函数在该方向上的变化率。...在机器学习中,通常使用梯度下降来进行模型参数的更新,以达到模型拟合的效果。 怎么找梯度图像中,最陡峭的方向? 最陡峭的方向便是梯度方向。数学理解,梯度实际上就是多变量微分的一般化。...,用包裹起来,梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向。...在实际图像处理中,我们通常不直接使用函数的全微分来确定梯度方向,而是使用更高效的算法如Sobel、Prewitt、Scharr等来计算图像中每个像素点处的梯度幅值和梯度方向。

    28140

    逻辑回归(logistics regression)原理-让你彻底读懂逻辑回归

    3 逻辑回归函数 在逻辑回归的由来一文中详细推导了得出逻辑回归函数的步骤,也得知逻辑回归的因变量g(y)就是伯努利分布中样本为1的概率。...在第二章中做简要说明,在Python中已有现成的封装函数,直接调用即可。 二、如何求解逻辑回归中的参数?...对于函数的某个特定点,它的梯度就表示从该点出发,函数值变化最为迅猛的方向。至此梯度下降法求解参数的方向已经找到,那就是函数的梯度方向。 接下来推导损失函数的梯度(偏导数): 由损失函数的公式知: ?...对损失函数求偏导: ? ? 至此,找到了梯度下降中的方向,只要给定一个步长就可以用迭代的方式来求待求参数,迭代的公式为: ?...之前由于工作需要,自己看了很多资料把逻辑回归的结果转成了评分卡的形式,写完了Python的实现函数,在接下来的时间我会好好总结评分卡的内容,争取评分卡的文章也早日和大家见面。

    70.4K2422
    领券