首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Python语言中从base64封装的字符串获取公钥

在Python语言中,从base64封装的字符串获取公钥可以通过以下步骤实现:

  1. 首先,导入所需的库和模块:
代码语言:txt
复制
import base64
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.backends import default_backend
  1. 接下来,定义一个函数来解码base64封装的字符串并获取公钥:
代码语言:txt
复制
def get_public_key_from_base64(base64_string):
    # 解码base64字符串
    decoded_bytes = base64.b64decode(base64_string)

    # 使用cryptography库加载公钥
    public_key = serialization.load_pem_public_key(
        decoded_bytes,
        backend=default_backend()
    )

    return public_key
  1. 最后,调用上述函数并传入base64封装的字符串来获取公钥:
代码语言:txt
复制
base64_string = "Base64-encoded-public-key"
public_key = get_public_key_from_base64(base64_string)

这样,你就可以从base64封装的字符串中获取公钥了。

关于这个问题,下面是一些额外的信息:

  • 概念:Base64是一种用于将二进制数据编码成ASCII字符的编码方式。公钥是在非对称加密中用于加密数据的密钥。
  • 优势:使用Base64编码可以将二进制数据表示为文本字符串,便于传输和存储。公钥加密可以提供更安全的通信和数据传输。
  • 应用场景:从base64封装的字符串获取公钥通常用于加密和解密数据、数字签名以及安全通信等领域。
  • 推荐的腾讯云相关产品:腾讯云提供了多个与云计算和安全相关的产品,如腾讯云密钥管理系统(KMS)和腾讯云SSL证书管理器。你可以在腾讯云官方网站上找到这些产品的详细介绍和文档。

这里是腾讯云密钥管理系统(KMS)的产品介绍链接:https://cloud.tencent.com/product/kms

请注意,以上答案仅供参考,并根据提供的问题进行了简化和限制,实际应用中可能涉及更多细节和安全考虑。建议在实际开发中参考相关文档和最佳实践来完成相应的任务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • RSA加密算法的java实现

    实现基本上就是这样,都是大同小异。不过,问题来了,结下来才是重点。 **1. RSA加密算法对于加密数据的长度是有要求的。一般来说,明文长度小于等于密钥长度(Bytes)-11。解决这个问题需要对较长的明文进行分段加解密,这个上面的代码已经实现了。 2. 一旦涉及到双方开发,语言又不相同,不能够采用同一个工具的时候,切记要约定以下内容。 a)约定双方的BASE64编码 b)约定双方分段加解密的方式。我踩的坑也主要是这里,不仅仅是约定大家分段的大小,更重要的是分段加密后的拼装方式。doFinal方法加密完成后得到的仍然是byte[],因为最终呈现的是编码后的字符串,所以你可以分段加密,分段编码和分段加密,一次编码两种方式(上面的代码采用的是后一种,也推荐采用这一种)。相信我不是所有人的脑回路都一样的,尤其是当他采用的开发语言和你不通时。**

    03

    25行代码实现完整的RSA算法

    python3.X版本的请点击这里25行代码实现完整的RSA算法   网络上很多关于RSA算法的原理介绍,但是翻来翻去就是没有一个靠谱、让人信服的算法代码实现,即使有代码介绍,也都是直接调用JDK或者Python代码包中的API实现,也有可能并没有把核心放在原理的实现上,而是字符串转数字啦、或者数字转字符串啦、或者即使有代码也都写得特别烂。无形中让人感觉RSA加密算法竟然这么高深,然后就看不下去了。看到了这样的代码我就特别生气,四个字:误人子弟。还有我发现对于“大整数的幂次乘方取模”竟然采用直接计算的幂次的值,再取模,类似于(2 ^ 1024) ^ (2 ^ 1024),这样的计算就直接去计算了,我不知道各位博主有没有运行他们的代码???知道这个数字有多大吗?这么说吧,把全宇宙中的物质都做成硬盘都放不下,更何况你的512M内存的电脑。所以我说他们的代码只可远观而不可亵玩已。   于是我用了2天时间,没有去参考网上的代码重新开始把RSA算法的代码完全实现了一遍以后发现代码竟然这么少,基本上25行就全部搞定。为了方便整数的计算,我使用了Python语言。为什么用Python?因为Python在数值计算上比较直观,即使没有学习过python的人,也能一眼就看懂了代码。而Java语言需要用到BigInteger类,数值的计算都是用方法调用,所以使用起来比较麻烦。如果有同学对我得代码感兴趣的话,先二话不说,不管3X7=22,把代码粘贴进pydev中运行一遍,是驴是马拉出来溜溜。看不懂可以私信我,我就把代码具体讲讲,如果本文章没有人感兴趣,我就不做讲解了。 RSA算法的步骤主要有以下几个步骤:     1、选择 p、q两个超级大的质数 ,都是1024位,显得咱们的程序货真价实。     2、令n = p * q。取 φ(n) =(p-1) * (q-1)。 计算与n互质的整数的个数。     3、取 e ∈ 1 < e < φ(n) ,( n , e )作为公钥对,正式环境中取65537。可以打开任意一个被认证过的https证书,都可以看到。     4、令 ed mod φ(n) = 1,计算d,( n , d ) 作为私钥对。 计算d可以利用扩展欧几里的算法进行计算,非常简单,不超过5行代码就搞定。     5、销毁 p、q。密文 = 明文 ^ e mod n , 明文 = 密文 ^ d mod n。利用蒙哥马利方法进行计算,也叫反复平方法,非常简单,不超过10行代码搞定。     实测:秘钥长度在2048位的时候,我的thinkpad笔记本T440上面、python2.7环境的运行时间是0.035秒,1024位的时候是0.008秒。说明了RSA加密算法的算法复杂度应该是O(N^2),其中n是秘钥长度。不知道能不能优化到O(NlogN)   代码主要涉及到三个Python可执行文件:计算最大公约数、大整数幂取模算法、公钥私钥生成及加解密。这三个文件构成了RSA算法的核心。   这个时候很多同学就不干了,说为什么我在网上看到的很多RSA理论都特别多,都分很多个章节,在每个章节中,都有好多个屏幕才能显示完,这么多的理论,想想怎么也得上千行代码才能实现,怎么到了你这里25行就搞定了呢?北门大官人你不会是在糊弄我们把?其实真的没有,我是良心博主,绝对不会糊弄大家,你们看到的理论确实这么多,我也都看过了,我把这些理论用了zip,gzip,hafuman,tar,rar等很多的压缩算法一遍遍地进行压缩,才有了这个微缩版的rsa代码实现,代码虽少,五脏俱全,是你居家旅行,课程设计、忽悠小白、必备良药。其实里边的几乎每一行代码都能写一篇博客专门进行介绍。   前方高能,我要开始装逼了。看不懂的童鞋请绕道,先去看看理论,具体内容如下:   1. 计算最大公约数   2. 超大整数的超大整数次幂取超大整数模算法(好拗口,哈哈,不拗口一点就显示不出这个算法的超级牛逼之处)   3. 公钥私钥生成

    02
    领券