首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在R Part2中利用MNIST数据利用深度网络读取手写数字

在R Part2中,利用MNIST数据集可以使用深度神经网络来读取手写数字。MNIST是一个经典的手写数字数据集,包含了60000个训练样本和10000个测试样本,每个样本都是一个28x28像素的灰度图像。

深度神经网络是一种人工神经网络的变体,它由多个隐藏层组成,每个隐藏层都包含多个神经元。通过增加隐藏层的数量和神经元的数量,深度神经网络可以学习到更加复杂的特征表示,从而提高模型的性能。

在R中,可以使用一些开源的深度学习框架,如Keras、TensorFlow等来构建深度神经网络模型。以下是一个示例代码,展示了如何使用Keras来构建一个简单的深度神经网络模型来读取MNIST数据集中的手写数字:

代码语言:txt
复制
# 安装和加载Keras库
install.packages("keras")
library(keras)

# 加载MNIST数据集
mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y

# 数据预处理
x_train <- array_reshape(x_train, c(nrow(x_train), 784))
x_test <- array_reshape(x_test, c(nrow(x_test), 784))
x_train <- x_train / 255
x_test <- x_test / 255
y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)

# 构建深度神经网络模型
model <- keras_model_sequential()
model %>% 
  layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>% 
  layer_dropout(rate = 0.4) %>% 
  layer_dense(units = 128, activation = 'relu') %>% 
  layer_dropout(rate = 0.3) %>% 
  layer_dense(units = 10, activation = 'softmax')

# 编译模型
model %>% compile(
  loss = 'categorical_crossentropy',
  optimizer = optimizer_rmsprop(),
  metrics = c('accuracy')
)

# 训练模型
history <- model %>% fit(
  x_train, y_train,
  epochs = 20, batch_size = 128,
  validation_split = 0.2
)

# 评估模型
score <- model %>% evaluate(x_test, y_test, verbose = 0)
cat('Test loss:', score[[1]], '\n')
cat('Test accuracy:', score[[2]], '\n')

在上述代码中,首先安装并加载了Keras库。然后加载了MNIST数据集,并进行了数据预处理,包括将图像数据reshape成一维向量、归一化处理和对标签进行one-hot编码。

接下来,使用keras_model_sequential()函数构建了一个序贯模型,然后通过layer_dense()函数添加了多个全连接层,并使用layer_dropout()函数添加了一些dropout层来防止过拟合。

之后,使用compile()函数编译了模型,指定了损失函数、优化器和评估指标。

然后,使用fit()函数对模型进行训练,指定了训练数据、训练轮数、批量大小和验证集比例。

最后,使用evaluate()函数评估了模型在测试集上的性能,并输出了测试损失和准确率。

这个示例代码展示了如何使用深度神经网络来读取MNIST数据集中的手写数字。对于更复杂的问题和数据集,可以根据需要调整模型的结构和参数,以获得更好的性能。

腾讯云提供了一系列与深度学习和云计算相关的产品和服务,如云服务器、GPU云服务器、人工智能平台等。您可以通过访问腾讯云官方网站(https://cloud.tencent.com/)了解更多相关信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 基于支持向量机的手写数字识别详解(MATLAB GUI代码,提供手写板)

    摘要:本文详细介绍如何利用MATLAB实现手写数字的识别,其中特征提取过程采用方向梯度直方图(HOG)特征,分类过程采用性能优异的支持向量机(SVM)算法,训练测试数据集为学术及工程上常用的MNIST手写数字数据集,博主为SVM设置了合适的核函数,最终的测试准确率达99%的较高水平。根据训练得到的模型,利用MATLAB GUI工具设计了可以手写输入或读取图片进行识别的系统界面,同时可视化图片处理过程及识别结果。本套代码集成了众多机器学习的基础技术,适用性极强(用户可修改图片文件夹实现自定义数据集训练),相信会是一个非常好的学习Demo。本博文目录如下:

    05

    使用卷积网络实现计算机图像识别:卷积和max pooling操作介绍

    深度学习在计算机图像识别上的应用非常成功。利用深度学习,我们能够对图片进行高精度识别,实现这一功能的,主要依靠神经网络中的一种分支,名为卷积网络。卷积网络与我们前面实现的网络不通之处在于,它可以直接接受多维向量,而我们以前实现的网络只能接收一维向量。 我们在开始时,实现了一个能够识别手写数字图片的网络,网络接收数据时,必须把一张28*28的灰度图转换为784长的一维向量。在深入解析卷积网络前,我们直接用代码将其实现出来,通过卷积网络实现手写数字识别功能,先获得一个感性认识,为后续的深入研究打下基础,我们看看

    04
    领券