非; | 或;& 和 isTRUE(x) 判断x是否为TRUE 完成以下重编码任务: 将leadership$age == 99 为缺失值,大于75岁为Elder,小于55岁为Young,中间为Middle...1)leadership$age[leadership$age == 99] NA within()可以认为是数据框版本的with(),将每一行都设置为缺失值,然后按条件赋值(字符型变量,还不是有序因子...4.5 缺失值 R中的字符型缺失值与数值型数据使用的缺失值符号是相同的。缺失值以符号NA(Not Available,不可用)表示。...($ == NA 错误) 不可能的值用NaN来标记(Not a number,不是一个数),用is.nan(),例如:sin(Inf) 4.5.2 重编码某些值为缺失值 leadership$age...4.5.3 在分析中排除缺失值 针对大部分函数,可以用na.rm=TRUE参数选项,结果忽略缺失值。
注释:一行中以井号”#”开头 换行:如果一条命令在一行结束的时候在语法上还不完整,换行提示符,默认是+ 3. 基本的对象 R创建和控制的实体被称为对象。...· 函数(function)是可以保存在项目工作空间的R对象。该对象为R提供了一个简单而又便利的功能扩充方法。当编写你自己的函数在R会话过程中,对象是通过名字创建和保存的。...对象持久化 R会话中创建的所有对象可以永久地保存在一个文件中以便于以后的R会话调用。在每一次R会话结束的时候,你可以保存当前所有可用的对象。...任何含有NA 数据的运算结果都将是NA。 函数is.na(x)返回一个和x同等长度的向量。它的某个元素值为TRUE 当且仅当x中对应元素是NA。...,运算符有算术运算符、逻辑运算符、数学函数,控制语句有if...else,for,while,repeat,seq()是数列生成中最为常用的工具,rep()把一个数的完整拷贝多次,并保持数列顺序,在某些情况下
3.R中缺失值的标记、重编码和排除 几乎所有项目中,都存在缺失值,在R中缺失值用NA代替(前面我们已经见过了)。R语言提供了一个简单而重要的函数is.na()来监测数据集中的缺失值。...图6:使用is.na()函数 数据集leadership中缺失值NA的位置都被标记上了TRUE。 这个函数简单在于用法简单易记,重要在于R语言中不存在x == NA来判断变量x是否为缺失值的用法!!!...值得一提的是,NA只是表示缺失值,和无效运算产生的结果NaN是不一样的。 我们在前面已经实验过了重编码某些值为缺失值的用法,就是将age为99的值标记为缺失值的步骤(如图3)。...图8:函数sum()中na.rm=TRUE的举例 总之,缺失值的处理是一个很复杂的问题,在删除缺失值对总体影响很小的情况下,这是最理想的选择。 ?...如果要在数据框中添加行(或者理解为将两个数据框纵向合并),使用函数rbind(),要求两个数据框有相同的变量,不过顺序不必要相同。一般用于向数据框中添加新的观测。
如果header = FALSE并且省略了col.names选项,则变量将命名为V1,V2,依此类推。 na.strings 指示缺失值代码的可选字符向量。...例如,na.strings = c(“9”,“?”)转换每个9和?读取数据时的值为NA colClasses 分配给列的类的可选向量。...例如,colClasses = c(“numeric”,“numeric”,“character”,“NULL”,“numeric”)将前两列读取为numeric,将第三列读取为character,跳过第四列...默认情况下,这是双引号"或单引号' skip 在开始读取数据之前要跳过的文本文件中的行数。...提取某两列作散点图 保存某些代码为脚本 图片 ************************* 答案:未给X赋值,给X赋值就可以了
因子 变量可归结为名义型、有序型或连续型变量。名义型变量是没有顺序之分的类别变量。类别(名义型)变量和有序类别(有序型)变量在R中称为因子(factor)。...因子在R中非常重要,因为它决定了数据的分析方式以及如何进行视觉呈现。...通常情况下,在创建数据框变量时,R隐式把数据类型为字符的列创建为因子,这是因为R会把文本类型默认为类别数据,并自动转换为因子。前面我们在讲数据框时,就有提到。...如果把其他字符串添加到gender列中,R会抛出警告消息,并把错误赋值的元素设置为NA,例如: > student$Gender[1]<- "female" Warning message: In `[...在特殊情况下,有些因子的水平在语义上大于或小于其他水平,R支持按顺序排列的因子,使用ordered函数,或通过给factor函数传入order=TRUE参数,把无序因子转换为有序的因子。
通常来说,R语言中存在: NA NULL NaN Inf/-Inf 这四种数据类型在R中都有相应的函数用以判断。 NA NA即Not available,是一个长度为1的逻辑常数,通常代表缺失值。...replace_na(df$X1,5) # 把df的X1列中的NA填充为5 2.3 fill() 使用tidyr包的fill()函数将上/下一行的数值填充至选定列中NA。...fill(df,X1,.direction = "up") # 将NA下一行的值填充到df的X1列中的NA 除此之外,类似原理的填充法还有均值填充法(用该变量的其余数值的均值来填充)、LOCF(last...3 虚拟变量法 当分类自变量出现NA时,把缺失值单独作为新的一类。 在性别中,只有男和女两类,虚拟变量的话以女性为0,男性为1。如果出现了缺失值,可以把缺失值赋值为2,单独作为一类。...由于将缺失值赋值,在统计时就不会把它当做缺失值删除,避免了由于这一个变量缺失而导致整个观测值被删除的情况。
,我们可以将要排除的变量先赋值给 remove,然后再筛选 remove <- c("Rodentia", "Carnivora", "Primates") msleep %>% select(order...但在某些情况下,需要根据部分内容进行筛选,我们需要一个函数来计算字符串上的正则表达式并返回布尔值。只要语句为 TRUE,就会过滤该行。... ## 1 Human 8.00 1.90 1.50 1.32 62.0 「filter_if」 现在我们想筛选出这样的观测值,字符型的变量中的值为空...,而不管数值型的变量是否为空, 此时 filter_all 就不太好用了,filter_all(any_vars(is.na(.)))会将所有包含 NA 的列选出来,不符合我们的要求 这里我们可以用 is.character...、 is.double、 is.logical、 is.factor等,我们的筛选手段 更加丰富了 「filter_at」 filter_at()可以用来筛选给定变量中符合某条件的观测值,比如下面这个例子
注:本文中所有的实践都是在Ubuntu虚拟机(系统具体版本为Ubuntu 12.04 LTS)下进行,但目测同样适用于各个平台。 1....,你便在MySQL中创建sonar的用户和数据库。...当然,把该路径加入环境变量也不失为一种方便的举措。 ...启动成功后,在浏览器中访问:http://localhost:9000,你将看到类似这样的SonarQube的Home页面(首次Project应该是空的): ?...3.1 SONAR启动后异常停止 笔者在正常启动Sonar后,遇到过两种异常停止的情况,由于控制台看不到具体的log信息,可以在sonar的解压包路径下的logs/sonar.log里寻找到具体信息
在本文中,我们将分析横断面工资数据,以期在实践中使用贝叶斯方法,如BIC和贝叶斯模型来构建工资的预测模型。 加载包 在本实验中,我们将使用dplyr包探索数据,并使用ggplot2包进行数据可视化。...我们可以在回归模型中包含所有相关的协变量,试图尽可能多地解释工资变化。 lm中的.的使用告诉R在模型中包含所有协变量,然后用-wage进一步修改,然后从模型中排除工资变量。...默认情况下,lm函数执行完整的案例分析,因此它会删除一个或多个预测变量中缺少(NA)值的观察值。 由于这些缺失的值,我们必须做一个额外的假设,以便我们的推论是有效的。...在没有任何额外信息的情况下,我们将假设这是合理的,并使用663个完整的观测值(与原来的935个相反)来拟合模型。...让我们试着从模型中删除出生顺序。为了确保观测值保持不变,可以将数据集指定为na.omit(wage),它只包含没有缺失值的观测值。
函数(function)是可以保存在项目工作空间的R 对象。该对象为R 提供了一个简单而又便利的功能扩充方法。见编写你自己的函数 在R会话过程中,对象是通过名字创建和保存的。...对象持久化 R 会话中创建的所有对象可以永久地保存在一个文件中以便于以后的R 会话调用。在每一次R 会话结束的时候,你可以保存当前所有可用的对象。...缺损值 在某些情况下,向量的元素可能有残缺....任何含有NA 数据的运算结果都将是NA。 函数is.na(x)返回一个和x同等长度的向量。它的某个元素值为TRUE 当且仅当x中对应元素是NA。...points(x, y) lines(x, y) 数学标注 在某些情况下,在一个图上加上数学符号和公式是非常有用的。
事实上,我们在实验中或者调查之后的分析往往希望通过分组比较来获得有统计学意义的结果,因此分组数据在我们平常的工作中更加常见,也更加科学严谨,那么我们就来了解下分组数据的描述。...在R中,就可以使用lapply()和sapply()两个函数实现。前一个总是返回列表(用“l”标识),而后者则尽可能将结果简化(用“s”标识)成向量或矩阵。...因此,计算数值向量组成的数据框中每个变量的均值可以如下操作: > lapply(thuesen,mean,na.rm=T) $blood.glucose [1] 10.3 $short.velocity...上述情况是不同变量的相同操作,如果是对不同组的相同变量操作,应该怎么实现呢?...带状图可以让我们了解每个点的分布情况,可以很好的排除样本量小的影响。
在这篇文章中,我们把这个模型称为 "二项逻辑回归",因为要预测的变量是二进制的,然而,逻辑回归也可以用来预测一个可以两个以上数值的因变量。在这第二种情况下,我们称该模型为 "多项式逻辑回归"。...例如,一个典型的例子是将电影分为 "搞笑片"、"纪录片 "或 "剧情片"等。 R中的逻辑Logistic回归实现 R使拟合一个逻辑回归模型变得非常容易。...确保参数na.strings等于c(""),这样每个缺失值都被编码为NA。...这个函数向我们展示变量是如何虚拟出来的,以及如何在模型中解释它们。 ? 例如,你可以看到,在性别这个变量中,女性将被用作参考变量。...Embarked中的缺失值,由于只有两个,我们将剔除这两行(我们也可以替换缺失值,保留数据点)。 data\[!is.na(Embarked),\] 在进行拟合之前,数据的清洗和格式化很重要。
这些数据是从 935 名受访者的随机样本中收集的。该数据集是_计量经济学数据集_系列的一部分 。 加载包 数据将首先使用该dplyr 包进行探索 ,并使用该ggplot2 包进行可视化 。.... - wage, dta = wge) 完整线性模型的上述总结表明,自变量的许多系数在统计上并不显着(请参阅第 4 个数字列中的 p 值)。选择模型变量的一种方法是使用贝叶斯信息准则 (BIC)。...下面,BMA被应用于工资数据(排除NA值后)。 # 不包括NA a_ona = na.omt(wae) # 运行BMA,指定BIC作为判断结果模型的标准 BMA(wge ~ . ...BMA模型的排名也可以用图像图来显示,它清楚地显示哪些变量在所有模型中,哪些变量被排除在所有模型之外,以及那些介于两者之间的变量。...下面的结果支持了关于包括或排除系数的决定。例如,在区间包含零,有大量证据支持排除该变量。
那么在R中怎么快速绘制绘制临床论文中的基线特征表1? 今天介绍一个新的绘制基线表的包——compareGroups。 ---- 目 录 1. 安装和加载R包 2. 加载数据集 3....安装和加载R包 compareGroups包可以通过分组变量来创建单变量分析结果的基线特征表,在创建出表格后可以导出各种格式用于报告。 在使用之前先安装和加载R包。...在使用compareGroups包前需要注意下: 需要知道数据集中哪些变量是分类变量,将其编码为因子,并注意是不是有序分类变量; 给分类变量添加标签属性,默认情况下输出的基线特征表会包含变量标签。...is.na(hormo))) ? 输出的基线表中会报告两次bmi的统计结果,第一个bmi表示所有患者的bmi结果,第二个bmi是报告hormo变量中排除缺失值时研究患者的bmi结果。 5....上面的结果中waist变量被描述为中位数+四分位数。 method中的数字:1表示正态分布;2表示连续非正态;3表示分类变量;NA表示执行Shapiro-Wilks检验来确定是正态还是非正态分布。
) append 是否为增量写入 quote 一个逻辑型或者数值型向量:如果为TRUE,则字符型变量和因子写在双引 号""中;若quote是数值型向量则代表将欲写在""中的那些列的列标。...(两种 情况下变量名都会被写在""中;若quote = FALSE则变量名不包含在双引号中) sep 文件中的字段分隔符 eol 指定行尾符,默认为'\n' na 表示缺失数据的字符 dec 用来表示小数点的字符...若quote=TRUE,则此参数用来指定字符型变量中的双引号"如何处理: 若参数值为"escape" (或者"e",缺省)每个"都用\"替换;若值为"d"则每 个"用""替换 类似的,write.table...但是从外部获取的数据会被R放到内存中,在处理大数据时,就会遇到问题。在处理大数据时,可以采用一下的方法: 使用数据库 每次从数据库中读取一部分数据进行处理。...包filehash可以将变量存储在磁盘上而不是内存中。 还可以使用数据库:将文件读入数据库,然后再把数据库装载为环境来代替将文件读入内存的作法。用with()函数可以指定环境。
(我们可以使用View(flights)在Rstudio中查看数据集的所有信息。...根据值选择观察(记录),filter() 对行重新排序,arrange() 根据名字选择变量,select() 根据已知的变量创建新的变量,mutate() 将许多值塌缩为单个描述性汇总,summarize...dplyr从不修改输入数据,所以如果你想要保存数据,必须使用<-进行赋值: jan1 <- filter(flights, month == 1, day == 1) R要么输出结果,要么将结果保存到一个变量...解决这种问题的一种有用简写为x %in% y。这将选择符合x属于y的行(x是y中的一个值)。...FALSE或者NA的行排除。
拿到数据后,在清楚了分析需求后,别急着各种统计、模型一块上,先给数据做个“清洁”再说。数据中往往会有各种缺失值,异常值,错误值等,今天先介绍一下如何处理缺失值,才能更好的数据分析,更准确高效的建模。...一 查看数据集的缺失情况 R中使用NA代表缺失值,用is.na识别缺失值,返回值为TRUE或FALSE。...最后一行返回的就是每一个变量(列)对应的缺失数目,38为一共有多少缺失值。下图同样的意思。 ?...三 处理缺失值 当充分了解了缺失值的情况后,可以根据数据量的大小,以及某一列是否为重要的预测作用变量,对数据集中的NA行和某些NA列进行处理。...[,c(1,3)]),] 4)表示将向量x中所以NA元素用某个值来代替 sleep[is.na(sleep)] <- 999 3.2 填充缺失值 当数据量不是很大或者变量比较重要时候,可以考虑对缺失值进行填充
在劳动经济学领域,收入和工资的研究为从性别歧视到高等教育等问题提供了见解 工资模型 在本文中,我们将分析横断面工资数据,以期在实践中使用贝叶斯方法,如BIC和贝叶斯模型来构建工资的预测模型。...我们可以在回归模型中包含所有相关的协变量,试图尽可能多地解释工资变化。 lm中的.的使用告诉R在模型中包含所有协变量,然后用-wage进一步修改,然后从模型中排除工资变量。...默认情况下,lm函数执行完整的案例分析,因此它会删除一个或多个预测变量中缺少(NA)值的观察值。 由于这些缺失的值,我们必须做一个额外的假设,以便我们的推论是有效的。...在没有任何额外信息的情况下,我们将假设这是合理的,并使用663个完整的观测值(与原来的935个相反)来拟合模型。...plot(den_of_y) BAS预测 在BAS中,用贝叶斯模型平均法构造预测区间是通过仿真实现的,而在模型选择的情况下,用预测区间进行精确推理往往是可行的。
我们将通过删除所有NA 并排除 Month 和Day 列来清理数据集 ,选择部分预测变量。...这是在所有独立值均为零的情况下模型预测的值。低系数 Solar.R 表示太阳辐射对预测臭氧水平没有重要作用,这不足为奇,因为在我们的探索性分析中,它与臭氧水平没有很大的相关性。...Error 是系数估计的标准误差 t value 以标准误差表示系数的值 Pr(>|t|) 是t检验的p值,表示检验统计量的重要性 标准误差 系数的标准误差定义为特征方差的标准偏差: 在R中,可以通过以下方式计算模型估计的标准误差...TRUE" t值 t值定义为 在R中 ## (Intercept) Solar.R Temp Wind ## -2.919845 2.302860...它定义为估计值与观察到的结果之间的相关性的平方: ## [1] 0.5924073 与[-1,1]中的相关性相反,R平方在[0,1] 中。
现在我想做的是对于每一行,找出非NA的值,填充到“mean.scale”这个新的变量;如果有多个非NA,那么就计算其平均值。也就是说,我希望最终得到如下数据集: ?...解 题思路 在解决本问题的过程中我们需要用到data.table包!...事实上,data.table也整合了reshape中的cast和melt函数,并且将cast函数升级为dcast,感兴趣的小伙伴可以去研究一番。 在拉直数据后,接下来要做的工作就很简单了。...首先,别忘了mean中的na.rm = T参数,它能够让函数忽略缺失值。...其次,最后计算出的结果中会有NaN(not a number)值,产生这种情况是因为在计算均值中出现了0作为除数的情况,对此我们需要用!is.finite()将其排除。
领取专属 10元无门槛券
手把手带您无忧上云