首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在R中将2个地块合并为1个地块

在R中将两个地块合并为一个地块可以使用"sf"(Simple Features)包来处理地理空间数据。具体操作步骤如下:

  1. 导入必要的包:
代码语言:txt
复制
library(sf)
  1. 读取地块数据: 假设我们有两个地块的Shapefile文件,分别是"land1.shp"和"land2.shp",可以使用以下命令读取这两个地块的数据:
代码语言:txt
复制
land1 <- st_read("land1.shp")
land2 <- st_read("land2.shp")
  1. 合并地块: 使用st_union()函数将两个地块合并为一个地块:
代码语言:txt
复制
merged_land <- st_union(land1, land2)
  1. 可选步骤:保存合并后的地块数据:
代码语言:txt
复制
st_write(merged_land, "merged_land.shp")

在上述步骤中,使用的关键函数为st_read()、st_union()和st_write()。需要注意的是,使用"sf"包处理地理空间数据时,需要确保地块数据的投影信息一致。

对于这个问题,腾讯云没有专门提供与之相关的产品,因此无法提供腾讯云相关产品的链接地址。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 一个有效的图表图像数据提取框架

    在本文中,作者通过采用最先进的计算机视觉技术,在数据挖掘系统的数据提取阶段,填补了研究的空白。如图1所示,该阶段包含两个子任务,即绘制元素检测和数据转换。为了建立一个鲁棒的Box detector,作者综合比较了不同的基于深度学习的方法,并找到了一种合适的高精度的边框检测方法。为了建立鲁棒point detector,采用了带有特征融合模块的全卷积网络,与传统方法相比,可以区分近点。该系统可以有效地处理各种图表数据,而不需要做出启发式的假设。在数据转换方面,作者将检测到的元素转换为具有语义值的数据。提出了一种网络来测量图例匹配阶段图例和检测元素之间的特征相似性。此外,作者还提供了一个关于从信息图表中获取原始表格的baseline,并发现了一些关键的因素来提高各个阶段的性能。实验结果证明了该系统的有效性。

    04

    农林业遥感图像分类研究[通俗易懂]

    遥感图像处理是数字图像处理技术中的一个重要组成部分,长期以来被广泛应用于农林业的遥感测绘,防灾减灾等领域。本文旨在通过深度学习技术从遥感影像中分类出农田和林业地块。手工从遥感图像中分类出农田和林业区域分类虽然准确但是效率低下,并且很多采用传统图像分割技术的方法泛化性能差,不适合场景复杂的遥感图像。经实践证明,使用深度学习技术在各种计算机视觉任务中都取得了良好的效果,因此本文首先使用先进的深度学习框架进行分类实验,例如使用PSPNet,UNet等作为分割网络对遥感图像数据集进行分类与分割训练。这些框架在ImageNet,COCO,VOC等数据集上表现很好,但是由于遥感图像数据集相对于ImageNet,COCO等数据集,不仅检测对象相对较小而且可供学习的数据集样本较少,需要针对这一特点进行优化。本文经过多次实验将高分辨率的图像切割成合适大小分辨率的图像以减小神经网络的输入,同时进行图片的预处理和数据增强来丰富学习样本。同时在真实情况下,农林区域易受到拍摄视角,光照等造成分割对象重叠,因此本文提出一种处理分割对象重叠的处理策略,来优化边界预测不准确的情况,使用该方法后准确率有明显提升。经实验证明,本文所提出的基于深度学习的农林业遥感影像分割在开源遥感图像数据集上的取得了94.08%的准确率,具有较高的研究价值 农林业遥感图像数据(图1)对于许多与农林业相关的应用至关重要。例如作物类型和产量监测,防灾减灾以及对粮食安全工作的研究和决策支持。最初,这些数据主要由政府机构使用。如今,蓬勃发展的农林业技术也需要在农场管理,产量预测和林业规划等各种应用领域进行革新。以往农林业地块的高质量遥感图像数据主要是手动在高分辨率图像中分割出来的,即通过土地功能不同引起的颜色,亮度或纹理的差异与周围区域 亮度或纹理的差异与周围区域区分开来。尽管农林业遥感图像的手动分类可以非常准确,但是非常耗时耗力。 图1.1:农田的遥感图像分割 定期更新农林业遥感图像数据的需求日益增加扩大了自动化分割农林业遥感图像的需求。 与ImageNet、VOC2007、COCO等目标检测/分类数据集中的大多数图像相比,农林业遥感图像中的对象相对简单。例如,人体的图像数据看起来要复杂得多,因为它包含各种不同纹理和形状的子对象(面部,手部,衣服等)。因此,优化传统的图像分割以及深度学习技术来设计用于农林业遥感图像分割的算法是非常重要的。该模型需要正确地排除不需要进行分割的对象(房屋,工厂,停车场等),区分具有几乎相似的光谱特性的相邻区域和可见度差的边界区域,并且正确地分割出所需的对象。 1.2 选题来源与经费支持 本研究课题来源于计算机与信息工程学院 随着传感器技术,航空航天技术,图像处理技术快速的发展,利用卫星遥感图像进行深度学习处理广泛应用于生产实际中。由于农林业遥感图像场景复杂,使用传统图像处理分割算法效果差且泛化性能弱,本文使用深度学习方法,在现有的的深度学习模型上训练,优化,最终提出一种一种优化后的深度学习模型,经测试,该模型在收集的农林业遥感图像数据集上可以准确的分割出所需的对象,本文提出的模型主要解决如下几个难点:

    02
    领券