首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在高PR值的网站中怎么获得导入连接

从高PR网站获得导入连接,主要是为了获得PR值的传递,同样也会获得网站权重的传递.前几次我们谈论到了广泛的链接来源和站长seo常用的隐藏连接等其他增加权重的方法,虽然不建议使用隐藏连接,但是这个的确不失为一个办法啊...Google每3个月更新一次PR,一年更新4次,但是有段时间出现了延迟,11月份新更新了一次,有欢喜有忧愁的.网站的PR始终是站长们关注的焦点.提高PR值有很多的方法今天介绍下利用导航网站获得高PR的导入连接方法...第一种情况自从hao123在国内兴起后,导航类的网站如雨后春笋般的出现.这样的导航站PR值都很高,这是一个获得高质量链接的途径,放在导航站的首页相当于一个免费的高质量链接,以后再有这样的信息,都要申请加入...,只要通过审核,网站都能显示在首页中,由此可以获得一个高质量的外部连接。...总之,导入连接和美国选举总统差不多的,需要投票选举,一个网站的获得的票数越多,越说明有威望,那么高质量的导入连接相当于一个在社会上有威望、有地位的名流投的票,有可能会引导其他人也同样投票,而普通的导入连接就是社会上普通民众

2.1K10

R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分析保险资金投资组合信用风险敞口

> reg1=glm(cout~ageconducteur+agevehicule,data=base,family=Gamma(link="log")) 可视化预测平均成本的代码如下:首先,我们必须计算特定值的预测...(尤其是在投资组合中很少见的情况下)。...:负利率和年金价值的变化 NBA体育决策中的数据挖掘分析:线性模型和蒙特卡罗模拟 基于R语言的lmer混合线性回归模型 Python用PyMC3实现贝叶斯线性回归模型 python用线性回归预测股票价格...,随机森林和深度学习模型分析 SPSS中的等级线性模型Multilevel linear models研究整容手术数据 用R语言用Nelson Siegel和线性插值模型对债券价格和收益率建模 R...语言中的block Gibbs吉布斯采样贝叶斯多元线性回归 R语言用线性模型进行预测:加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值 使用SAS,Stata,HLM,R,SPSS和Mplus

2.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    广义线性模型应用举例之泊松回归及R计算

    、二项分布、负二项分布、多项分布、泊松分布、集合分布等都属于指数分布族,并通过极大似然估计获得模型参数。...生物学数据中很多都是计数型数值,通常具有这些特点:(1)数值是离散的,并且只能是非负整数;(2)数值分布倾向于在特定较小范围内聚集,并具有正偏态的分布特征;(3)通常会出现很多零值;(4)方差随均值而增加...在早期,计数数型变量常通过数据变换或通过非参数假设检验进行分析,现如今更普遍使用广义线性模型方法的主要原因是可以获得可解释的参数估计。 关于负二项回归在前文“负二项回归”中已作过简介。...本示例直接使用基础包函数glm()作简单展示。 首先不妨使用全部环境变量拟合与R. cataractae丰度的多元泊松回归,本次计算过程中暂且忽略离群值以及多重共线性等的影响。...泊松分布的方差和均值是相等的。由于拟合出的值是泊松分布均值的估计值,泊松回归的残差的方差应该与均值的预测值相等。因此,在对残差和拟合值作图时,随着均值预测值的增加,残差方差应该以相同的速度增加。

    8.9K44

    【数据分析 R语言实战】学习笔记 第九章(下)岭回归及R实现 广义线性模型

    9.4岭回归及R实现 岭回归分析是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,它是通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法...9.5.2 R语言实现 R提供了拟合广义线性模型的函数glm(),其调用格式为 glm(formula, family = gaussian, data, weights, subset,...下面用R实现,首先建立数据集,分类变量直接输入定性的取值即可,glm()分析时会自动转换成矩阵X,注意参数family的写法。...下面通过作图来观察模型拟合的效果,首先提取模型的预测值,注意函数predict()提取的是线性部分的拟合值,在对数连接函数下,要得到Y的拟合值,应当再做一次指数变换。...",pch="*") > abline(0,1) #添加直线y=x,截距为0,斜率为1 若假设上例中的索赔次数服从负二项分布,在R中应输入指令: > library(MASS) > attach(dat

    9.6K20

    R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享

    GLM是一种灵活的统计模型,适用于各种数据类型和分布,包括二项分布、泊松分布和负二项分布等非正态分布。...train_lm <-......odel(train_lm) 预测值和观测值之间不匹配。部分原因是这里的响应变量在残差中不是正态分布的,而是泊松分布,因为它是计数数据。...忽略异常值测试,因为在更详细的观察中我们发现没有异常值。 我们还可以查看预测与量化残差图。...在R中,我们可以使用两种形式来参数化二项逻辑回归 - 这两种形式是等价的,因为它们将结果扩展为成功次数和总试验次数。...例如 - R emmeans(sodium_b...... confint(adjust = "none") 如果我们有一个连续的协变量,我们可以获得拟合值和误差,并将它们放入模型中。

    96720

    Logistic回归模型、应用建模案例

    logistic回归的公式可以表示为: 其中P是响应变量取1的概率,在0-1变量的情形中,这个概率就等于响应变量的期望。.../预测正例总数 Precision(Positive Predicted Value,PV+)=d/(b+d) 负例的命中率=正确预测到的负例个数/预测负例总数 Negative predicted value...平移图中对角线,与ROC曲线相切,可以得到TPR较大而FPR较小的点。模型效果越好,则ROC曲线越远离对角线,极端的情形是ROC曲线经过(0,1)点,即将正例全部预测为正例而将负例全部预测为负例。...=data[order(data$prob),] n=nrow(data) tpr=fpr=rep(0,n) 根据不同的临界值threshold来计算TPR和FPR,之后绘制成图 for (i in 1...order(data1$prob),] n=nrow(data1) tpr=fpr=rep(0,n) 根据不同的临界值threshold来计算TPR和FPR,之后绘制成图 for (i in 1:n){

    3.3K40

    R 语言统计建模大全:20 个经典模型实战解析,速收藏!

    统计建模是数据科学中至关重要的一部分,帮助分析和预测数据中的趋势与模式。在数据科学中,常用的统计模型有回归分析、时间序列分析、分类模型、聚类模型等,每种模型有其独特的应用场景。...在R语言中,我们可以通过丰富的统计包,如lm()进行线性回归分析,glm()用于广义线性模型,arima()进行时间序列建模等。...poisson) # 查看模型摘要 summary(model) 五、负二项回归 负二项回归用于处理过度离散的计数数据。...)^2 print(paste("回归模型R平方值:", round(rsq_reg, 2))) 十、支持向量机 SVM是一种强大的分类算法,特别适合处理高维数据。...# 多层次模型(Multilevel Models, MLM)在 R 中的应用 # 加载必要的包 install.packages("lme4") library(lme4) install.packages

    14610

    R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类

    可视化 让我们在第二个数据集上可视化从逻辑回归获得的预测 image(u,u,v ,breaks=(0:10)/10) points(x,y,pch=19 ) points(x,y,pch=c(1,19...现在的预测将是 bs(x,knots=c(15,25), Boundary.knots=c(5,55),degre=3 ? 结的位置 在许多应用程序中,我们不想指定结的位置。我们只想说(三个)中间结。...(样本中的最小值和最大值),也为我们提供了三个中间结。...有趣的是,我们现在有两个“完美”的模型,白点和黑点的区域不同。 在R中,可以使用mgcv包来运行gam回归。...Python用广义加性模型GAM进行时间序列分析 R语言广义线性模型GLM、多项式回归和广义可加模型GAM预测泰坦尼克号幸存者 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑

    1.4K20

    R语言从入门到精通:Day13

    基础模型构建 R中可通过函数glm()(还可用其他专门的函数)拟合广义线性模型。它的形式与lm()类似,只是多了一些参数。...这里有一些实用的建议:评价模型的适用性时,可以绘制初始响应变量的预测值与残差的图形、还可以列出帽子值(hat value)、学生化残差值和Cook距离统计量的近似值以及绘制这些统计量的参考图,当然你还可以找一些辅助函数...与标准线性模型不一样的是,在Logistic回归中,因变量是Y=1的对数优势比(log)。回归系数的含义是当其他预测变量不变时,一单位预测变量的变化可引起的因变量对数优势比的变化。...如果这样还不够直观,还可以使用predict()函数,观察预测变量在各个水平时对结果概率的影响。...图7中是修改参数之后的回归模型,所得的回归系数估计与泊松方法相同,但标准误变大了许多。此处,标准误越大将会导致Trt(和Age)的p值越大于0.05。

    1.7K20

    (数据科学学习手札58)在R中处理有缺失值数据的高级方法

    一、简介   在实际工作中,遇到数据中带有缺失值是非常常见的现象,简单粗暴的做法如直接删除包含缺失值的记录、删除缺失值比例过大的变量、用0填充缺失值等,但这些做法会很大程度上影响原始数据的分布或者浪费来之不易的数据信息...,因此怎样妥当地处理缺失值是一个持续活跃的领域,贡献出众多巧妙的方法,在不浪费信息和不破坏原始数据分布上试图寻得一个平衡点,在R中用于处理缺失值的包有很多,本文将对最为广泛被使用的mice和VIM包中常用的功能进行介绍...m: 生成插补矩阵的个数,mice最开始基于gibbs采样从原始数据出发为每个缺失值生成初始值以供之后迭代使用,而m则控制具体要生成的完整初始数据框个数,在整个插补过程最后需要利用这m个矩阵融合出最终的插补结果...: 因为mice中绝大部分方法是用拟合的方式以含缺失值变量之外的其他变量为自变量,缺失值为因变量构建回归或分类模型,以达到预测插补的目的,而参数predictorMatrix则用于控制在对每一个含缺失值变量的插补过程中作为自变量的有哪些其他变量...,对插补方法进行微调是很必要的步骤,在上面铺垫了这么多之后,下面在具体示例上进行演示,并引入其他的辅助函数; 2.3  利用mice进行缺失值插补——以airquality数据为例   因为前面对缺失值预览部分已经利用

    3.1K40

    数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据|附代码数据

    所以 之后即为最大似然法的过程。 教育数据 本教程中使用的数据是教育数据。 该数据来源于全国性的小学教育调查。数据中的每一行都是指一个学生。...数据中,经济地位变量有1066个观测值缺失。对缺失数据的处理本身就是一个复杂的话题。为了方便起见,我们在本教程中简单地将数据缺失的案例删除。...更多没有接受过学前教育的学生留级。这一观察结果表明,性别和学前教育可能对留级有预测作用。 构建二元逻辑回归模型 R默认安装了基础包,其中包括运行GLM的glm函数。...glm的参数与lm的参数相似:公式和数据。然而,glm需要一个额外的参数:family,它指定了结果变量的假设分布;在family中我们还需要指定链接函数。...此外,即使是结果(即留级)和预测变量(如性别、学前教育、学校平均社会经济地位)之间的关系,在不同的学校也可能不同。还要注意的是,学校平均社会经济地位变量中存在缺失值。

    1.1K00

    R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况

    现在需要考虑其他的缺失值。在拟合广义线性模型时,R可以通过在拟合函数中设置一个参数来处理它们。 然而,我个人更喜欢 "手动"替换缺失值。...Embarked中的缺失值,由于只有两个,我们将剔除这两行(我们也可以替换缺失值,保留数据点)。 data\[!is.na(Embarked),\] 在进行拟合之前,数据的清洗和格式化很重要。...这个预处理步骤对于获得良好的模型拟合和更好的预测能力是非常重要的。 模型拟合 我们把数据分成两部分:训练集和测试集。训练集将被用来拟合我们的模型,我们将在测试集上进行测试。...请务必在glm()函数中指定参数family=binomial。 glm(Survived ~....这个预测因素的负系数表明,在所有其他变量相同的情况下,男性乘客生存的可能性较小。

    2.6K10

    R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育调查数据

    所以 之后即为最大似然法的过程。 教育数据 本教程中使用的数据是教育数据。 该数据来源于全国性的小学教育调查。数据中的每一行都是指一个学生。...数据中,经济地位变量有1066个观测值缺失。对缺失数据的处理本身就是一个复杂的话题。为了方便起见,我们在本教程中简单地将数据缺失的案例删除。...更多没有接受过学前教育的学生留级。这一观察结果表明,性别和学前教育可能对留级有预测作用。 构建二元逻辑回归模型 R默认安装了基础包,其中包括运行GLM的glm函数。...glm的参数与lm的参数相似:公式和数据。然而,glm需要一个额外的参数:family,它指定了结果变量的假设分布;在family中我们还需要指定链接函数。...此外,即使是结果(即留级)和预测变量(如性别、学前教育、学校平均社会经济地位)之间的关系,在不同的学校也可能不同。还要注意的是,学校平均社会经济地位变量中存在缺失值。

    9.4K30

    MADlib——基于SQL的数据挖掘解决方案(12)——回归之广义线性模型

    广义线性模型是一般线性模型的直接扩展,它使因变量的总体均值通过一个非线性连接函数(link function,如上例中的ln),而依赖于线性预测值,同时还允许响应概率分布为指数分布族中的任何一员。...广义线性模型在两个方面对普通线性模型进行了扩展: 一般线性模型中要求因变量是连续的且服从正态分布。在广义线性模型中,因变量的分布可扩展到非连续的,如二项分布、泊松分布、负二项分布等。...一般线性模型中,自变量的线性预测值就是因变量的估计值,而广义线性模型中,自变量的线性预测值是因变量的连接函数估计值。...预测函数 (1) 语法 glm_predict(coef, col_ind_var link) (2) 参数 coef:FLOAT8[]类型,训练模型获得的回归系数向量...与madlib.linregr_train线性回归训练函数不同,madlib.glm不返回R2决定系数,而是用对数似然值评估模型的拟合程度。统计学中,似然函数是一种关于统计模型参数的函数。

    96620

    R语言中广义线性模型(GLM)中的分布和连接函数分析

    =base) regIGlog = glm(y~x,family=inverse.gaussian(link="log"),data=base 还可以考虑一些Tweedie分布,甚至更一般 考虑使用线性链接函数在第一种情况下获得的预测...在指数预测的情况下,我们获得 ​ 我们实际上可以近距离看。...​ 或者,如果我们添加置信区间,我们将获得 ​ 因此,这里的“斜率”也非常相似...如果我们看一下在图表左侧产生的误差,可以得出 plot(Vgamma,Verreur,type="l",lwd...Gibbs抽样的贝叶斯简单线性回归仿真分析 5.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析 6.使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM 7.R语言中的岭回归...、套索回归、主成分回归:线性模型选择和正则化 8.R语言用线性回归模型预测空气质量臭氧数据 9.R语言分层线性模型案例

    4.1K21

    R语言在逻辑回归中求R square R方

    也许第二种最常见的回归模型是逻辑回归,它适用于二元结果数据。如何计算逻辑回归模型的R平方? 麦克法登R平方 在R中,glm(广义线性模型)命令是用于拟合逻辑回归的标准命令。...据我所知,拟合的glm对象并没有直接给你任何伪R平方值,但可以很容易地计算出McFadden的度量。为此,我们首先拟合我们感兴趣的模型,然后是仅包含截距的null模型。...然后我们可以使用拟合模型对数似然值计算McFadden的R平方: mod glm(y~x,family =“binomial”) nullmod glm(y~1,family =“binomial...”) 1-logLik(MOD)/ logLik(nullmod) 为了了解预测器需要获得某个McFadden的R平方值的强度,我们将使用单个二进制预测器X来模拟数据, 我们首先尝试P(Y = 1 |...: 2443.5 on 2 degrees of freedom AIC: 2447.5 Number of Fisher Scoring iterations: 4 正如所料,我们从分组数据框中获得相同的参数估计和推论

    4.4K20

    数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

    具体来说,本教程重点介绍逻辑回归在二元结果和计数/比例结果情况下的使用,以及模型评估的方法 本教程使用教育数据例子进行模型的应用。此外,本教程还简要演示了用R对GLM模型进行的多层次扩展。...所以 之后即为最大似然法的过程。 教育数据 本教程中使用的数据是教育数据。 该数据来源于全国性的小学教育调查。数据中的每一行都是指一个学生。...更多没有接受过学前教育的学生留级。这一观察结果表明,性别和学前教育可能对留级有预测作用。 构建二元逻辑回归模型 R默认安装了基础包,其中包括运行GLM的glm函数。...glm的参数与lm的参数相似:公式和数据。然而,glm需要一个额外的参数:family,它指定了结果变量的假设分布;在family中我们还需要指定链接函数。...此外,即使是结果(即留级)和预测变量(如性别、学前教育、学校平均社会经济地位)之间的关系,在不同的学校也可能不同。还要注意的是,学校平均社会经济地位变量中存在缺失值。

    1K10

    R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

    本教程使用教育数据例子进行模型的应用。此外,本教程还简要演示了用R对GLM模型进行的多层次扩展。最后,还讨论了GLM框架中的更多分布和链接函数。 本教程包含以下结构。 1. 准备工作。 2....所以 之后即为最大似然法的过程。 教育数据 本教程中使用的数据是教育数据。 该数据来源于全国性的小学教育调查。数据中的每一行都是指一个学生。...更多没有接受过学前教育的学生留级。这一观察结果表明,性别和学前教育可能对留级有预测作用。 构建二元逻辑回归模型 R默认安装了基础包,其中包括运行GLM的glm函数。...glm的参数与lm的参数相似:公式和数据。然而,glm需要一个额外的参数:family,它指定了结果变量的假设分布;在family中我们还需要指定链接函数。...此外,即使是结果(即留级)和预测变量(如性别、学前教育、学校平均社会经济地位)之间的关系,在不同的学校也可能不同。还要注意的是,学校平均社会经济地位变量中存在缺失值。

    1.1K10

    R语言实现逻辑回归模型

    结果一样,将获得有关残差相关的信息,以及预测变量的显着性估计,logisitic回归框架中p值的解释与线性回归模型的p值相同。...由 summary() 调用生成的逻辑回归诊断值通常不直接用于解释模型的“拟合优度”。 在进行任何预测之前,让我们用summary()简要检查模型。...除其他外,重要的是要看看我们的模型估计了哪些系数值。 逻辑回归进行预测 但是,在更仔细地研究更适合于逻辑回归的模型诊断之前,首先应该了解如何使用带有glm()的predict()函数。...我们可以使用caret包中的confusionMatrix()函数轻松获得灵敏度,特异性等值。...活动方式: 在本公众号下留言区留言,分享一下你学习R的经历或者其他感受,点赞数最高的2位小伙伴获得 《深入浅出R语言数据分析》 一书,免费包邮哦!截止时间 至2020年12月10日20点整。

    4.7K20

    数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病|附代码数据

    1=正常;2=固定缺陷;3=可逆转缺陷目标--预测属性--心脏疾病的诊断(血管造影疾病状态)(值0=值1=>50%直径狭窄)在Rstudio中加载数据heart获得生成模型的数据的预测分数。我们可以看到,预测的分数是患心脏病的概率。但我们必须找到一个适当的分界点,从这个分界点可以很容易地区分是否患有心脏病。...----点击标题查阅往期内容R语言逻辑回归logistic模型分析泰坦尼克titanic数据集预测生还情况R语言是否对二分连续变量执行逻辑回归R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据...R语言用线性模型进行臭氧预测:加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值R语言Bootstrap的岭回归和自适应LASSO回归可视化R语言中回归和分类模型选择的性能指标R语言多元时间序列滚动预测...:ARIMA、回归、ARIMAX模型分析R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据R语言计量经济学:虚拟变量(哑变量)在线性回归模型中的应用R语言 线性混合效应模型实战案例

    1K00
    领券