1、在tensorflow绘图的情况下,使用tf.saved_model.simple_save()方法保存模型
如果您使用过 TensorFlow 1.x,则本部分将重点介绍迁移到 TensorFlow 2.0 所需的总体概念更改。 它还将教您使用 TensorFlow 可以进行的各种 AIY 项目。 最后,本节向您展示如何将 TensorFlow Lite 与跨多个平台的低功耗设备一起使用。
这是Tensorflow SavedModel模型系列文章的第三篇,也是终章。在《Tensorflow SavedModel模型的保存与加载》中,我们谈到了Tensorflow模型如何保存为SavedModel格式,以及如何加载之。在《如何查看tensorflow SavedModel格式模型的信息》中,我们演示了如何查看模型的signature和计算图结构。在本文中,我们将探讨如何合并两个模型,简单的说,就是将第一个模型的输出,作为第二个模型的输入,串联起来形成一个新模型。
模型训练好之后,我们就要想办法将其持久化保存下来,不然关机或者程序退出后模型就不复存在了。本文介绍两种持久化保存模型的方法:
从现在开始我们就正式进入TensorFlow2.0的学习了,在这一系列文章里我们将重点介绍TensorFlow的基础知识和使用方法,为后面我们使用TensorFlow去解决一些实际的问题做好准备。2019年3月的TensorFlow开发者峰会上,TensorFlow2.0 Alpha版正式发布,2.0版相比之前的1.x(1.x泛指从1.0到1.13的各个TensorFlow版本)版做了很大的改进,在确保灵活性和性能的前提下易用性得到了很大的提升,对于初次接触TensorFlow的读者来说,建议直接从2.0版开始使用。
本文介绍基于Python的tensorflow库,将tensorflow与keras训练好的SavedModel格式神经网络模型转换为frozen graph格式,从而可以用OpenCV库在C++等其他语言中将其打开的方法。
由于令人难以置信的多样化社区,TensorFlow 已经发展成为世界上最受欢迎和广泛采用的 ML 平台之一。这个社区包括:
卷积神经网络(CNN)非常适合计算机视觉任务。使用对大型图像集(如ImageNet,COCO等)进行训练的预训练模型,可以快速使这些体系结构专业化,以适合独特数据集。此过程称为迁移学习。但是有一个陷阱!用于图像分类和对象检测任务的预训练模型通常在固定的输入图像尺寸上训练。这些通常从224x224x3到某个范围变化,512x512x3并且大多数具有1的长宽比,即图像的宽度和高度相等。如果它们不相等,则将图像调整为相等的高度和宽度。
本书的这一部分将为您简要概述 TensorFlow 2.0 中的新增功能,与 TensorFlow 1.x 的比较,惰性求值和急切执行之间的差异,架构级别的更改以及关于tf.keras和Estimator的 API 使用情况。
特邀博文 / 软件工程师 Pierric Cistac;研究员 Victor Sanh;技术主管 Anthony Moi,来自 Hugging Face
本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载
作为最流行的深度学习框架,TensorFlow 已经成长为全球使用最广泛的机器学习平台。目前,TensorFlow 的开发者社区包括研究者、开发者和企业等。
TensorFlow 已经发展为世界上最受欢迎和被广泛采用的机器学习平台之一,我们衷心感谢一直以来支持我们的各界的开发者和他们的贡献:
2018 年 11 月,TensorFlow 迎来了它的 3 岁生日,我们回顾了几年来它增加的功能,进而对另一个重要里程碑 TensorFlow 2.0 感到兴奋 !
本文源码已经上传至 github.: https://github.com/HuBlanker/Keras-Chinese-NER
为提高 TensorFlow 的工作效率,TensorFlow 2.0 进行了多项更改,包括删除了多余的 API,使API 更加一致统一,例如统一的 RNNs (循环神经网络),统一的优化器,并且Python 运行时更好地集成了 Eager execution 。
我们将在本文中为您介绍如何使用 BigTransfer (BiT)。BiT 是一组预训练的图像模型:即便每个类只有少量样本,经迁移后也能够在新数据集上实现出色的性能。
在最近的一篇文章中,我们提到,TensorFlow 2.0经过重新设计,重点关注开发人员的工作效率、简单性和易用性。
本文主要介绍在TensorFlow2 中使用Keras API保存整个模型,以及如果使用保存好的模型。保存整个模型时,有两种格式可以实现,分别是SaveModel和HDF5;在TF2.x中默认使用SavedModel格式。
【磐创AI导读】:本系列文章介绍了与tensorflow的相关知识,包括其介绍、安装及使用等。本篇文章将接着上篇文章继续介绍它的使用。查看上篇:一文上手最新TensorFlow2.0系列(二)。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
· Eager Execution成为2.0的一个核心功能。这个命令式的编程环境,会让入门TensorFlow变得更容易。
这两天搜索了不少关于Tensorflow模型保存与加载的资料,发现很多资料都是关于checkpoints模型格式的,而最新的SavedModel模型格式则资料较少,为此总结一下TensorFlow如何保存SavedModel模型,并加载之。
又是一年一度的十一黄金旅游周,你是在景区看人从众叕,还是在高速公路上观看大妈打太极呢?旅游黄金周我一般是尽量不出门,这个十一也不例外。十月一日跑了一个半马迎接国庆,十月二号选择去了一个偏门的景点:张之洞与武汉博物馆。今天则宅在家,吃吃喝喝之余,琢磨起识别狗狗的微信小程序。
在TensorFlow官方新的教程中,第一个例子使用了由MNIST延伸而来的新程序。 这个程序使用一组时尚单品的图片对模型进行训练,比如T恤(T-shirt)、长裤(Trouser),训练完成后,对于给定图片,可以识别出单品的名称。
在深度学习算法优化系列三 | Google CVPR2018 int8量化算法 这篇推文中已经详细介绍了Google提出的Min-Max量化方式,关于原理这一小节就不再赘述了,感兴趣的去看一下那篇推文即可。今天主要是利用tflite来跑一下这个量化算法,量化一个最简单的LeNet-5模型来说明一下量化的有效性。tflite全称为TensorFlow Lite,是一种用于设备端推断的开源深度学习框架。中文官方地址我放附录了,我们理解为这个框架可以把我们用tensorflow训练出来的模型转换到移动端进行部署即可,在这个转换过程中就可以自动调用算法执行模型剪枝,模型量化了。由于我并不熟悉将tflite模型放到Android端进行测试的过程,所以我将tflite模型直接在PC上进行了测试(包括精度,速度,模型大小)。
TensorFlow 2.0 安装指南:https://www.tensorflow.org/install
最近需要将使用keras训练的模型移植到手机上使用, 因此需要转换到tensorflow的二进制模型。
2.一个函数有了input_signature之后,在tensorflow里边才可以保存成savedmodel。在保存成savedmodel的过程中,需要使用get_concrete_function函数把一个tf.function标注的普通的python函数变成带有图定义的函数。
【AI科技大本营导语】在今天举行的 2019 年 TensorFlow 开发者峰会上,谷歌宣布了其针对研究和生产的开源机器学习库的一些更新。TensorFlow 2.0 alpha 提供即将发生的变化的预览,旨在让初学者更容易使用 ML。
有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。
得益于更快的计算,更好的存储和易于使用的软件,基于深度学习的解决方案绝对可以看到从概念验证隧道进入现实世界的曙光!看到深度学习模型已广泛应用于该行业的各个领域,包括医疗保健,金融,零售,技术,物流,食品技术,农业等!考虑到深度学习模型需要大量资源并且经常需要大量计算的事实,因此我们需要暂停片刻,并考虑一下最终用户使用模型时的推断和服务时间。
在《Tensorflow SavedModel模型的保存与加载》一文中,我们谈到SavedModel格式的优点是与语言无关、容易部署和加载。那问题来了,如果别人发布了一个SavedModel模型,我们该如何去了解这个模型,如何去加载和使用这个模型呢?
【导读】TensorFlow 1.0并不友好的静态图开发体验使得众多开发者望而却步,而TensorFlow 2.0解决了这个问题。不仅仅是默认开启动态图模式,还引入了大量提升编程体验的新特性。本文通过官方2.0的风格指南来介绍新版本的开发体验。
这是当微信小程序遇上TensorFlow系列文章的第四篇文章,阅读本文,你将了解到:
本节学习来源斯坦福大学cs20课程,有关本节源代码已同步只至github,欢迎大家star与转发,收藏!
文章目录 部署 模型导出 分布式计算 单机 MirroredStrategy 多机 MultiWorkerMirroredStrategy 部署Docker 环境 部署 模型导出 SaveModel:与前面介绍的 Checkpoint 不同,SavedModel 包含了一个 TensorFlow 程序的完整信息: 不仅包含参数的权值,还包含计算的流程(即计算图) 。当模型导出为 SavedModel 文件时,无需建立模型的源代码即可再次运行模型,这使得 SavedModel 尤其适用于模型的分享和部
文件中保存的仅仅是参数张量的数值,没有其他的结构参数,需要使用相同的网络结构才能恢复网络数据,一般在拥有源文件的情况下使用。
今年三月,谷歌在TensorFlow 开发者大会上发布了TensorFlow 2.0 Alpha版。开发者们喜忧参半,可喜的是这次TensorFlow团队听去了开发者的反馈,新版本着重突出简单、强大、可拓展三大特点。
2019 年 3 月 6 日,谷歌在 TensorFlow 开发者年度峰会上发布了最新版的 TensorFlow 框架 TensorFlow2.0 。新版本对 TensorFlow 的使用方式进行了重大改进,使其更加灵活和更具人性化。具体的改变和新增内容可以从 TensorFlow 的官网找到,本文将介绍如何使用 TensorFlow2.0 构建和部署端到端的图像分类器,以及新版本中的新增内容,包括:
本文介绍了 TensorFlow 常见模型格式和载入、保存方法。TensorFlow 支持多种模型格式,包括 CheckPoint、GraphDef、SavedModel 等,这些格式之间关系密切,可以使用 TensorFlow 提供的 API 来互相转换。在训练和部署模型时,可以根据具体需求选择相应的格式。
如何将机器学习(ML)模型部署上线至生产环境已成为经常性的热门话题。为此许多公司和框架提出了各种不同的解决方案。
【导读】随着TensorFlow的普及,越来越多的行业希望将Github中大量已有的TensorFlow代码和模型集成到自己的业务系统中,如何在常见的编程语言(Java、NodeJS等)中使用TensorFlow成为了一个比较常见的问题。专知成员Hujun给大家详细介绍了在Java中使用TensorFlow的两种方法,并着重介绍如何用TensorFlow官方Java API调用已有TensorFlow模型的方法。 专知成员Hujun在以前就写过TensorFlow 1.4 Eager Execution系列
今年初,我们在 TensorFlow 开发者大会 (TensorFlow Dev Summit) 上发布了 TensorFlow 2.0 的 Alpha 版本。经过近 7 个月的努力,今天我们高兴的宣布,TensorFlow 2.0 正式版现已推出!
版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。 https://blog.csdn.net/u014365862/article/details/81009551
这是一本简明的 TensorFlow 2.0 入门指导手册,基于 Keras 和 Eager Execution(即时运行)模式,力图让具备一定机器学习及 Python 基础的开发者们快速上手 TensorFlow 2.0。
而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。
从前面的Tensorflow环境搭建到目标检测模型迁移学习,已经完成了一个简答的扑克牌检测器,不管是从图片还是视频都能从画面中识别出有扑克的目标,并标识出扑克点数。但是,我想在想让他放在浏览器上可能实际使用,那么要如何让Tensorflow模型转换成web格式的呢?接下来将从实践的角度详细介绍一下部署方法!
可能没人比François Chollet更了解Keras吧?作为Keras的开发者François对Keras可以说是了如指掌。他可以接触到Keras的更新全过程、获得最一手的资源。同时他本人也非常乐于分享、教导别人去更好的学习TensorFlow和Keras。
领取专属 10元无门槛券
手把手带您无忧上云