首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

emgucv教程(iis配置步骤)

Emgu CV 是.NET平台下对OpenCV图像处理库的封装。也就是OpenCV的.NET版。它运行在.NET兼容的编程语言下调用OpenCV的函数,如C#、VB、VC++等。同时这个封装库可以在Mono下编译和在Linux / Mac OS X上运行。Emgu Cv的优势在于.net非常完美的界面,给用户操作带来非常直观的感觉。Emgu Cv每个版本都有修改一部分函数,在兼容旧版本下做的不是很好。本书主要采用VS2013+EmguCv3.0版本,希望读者也采用相同的版本进行学习,从而避免一些版本兼容上的问题。在国内并不流行Emgu Cv,因此关于Emgu Cv的资料比较少,从而导致了新手学习起来比较费劲,同时使更多想去学习Emgu Cv的人放弃学习,这样的一个恶性循环。

03
您找到你想要的搜索结果了吗?
是的
没有找到

最新SOTA!隐式学习场景几何信息进行全局定位

全局视觉定位是指利用单张图像,根据已有的地图,估计相机的绝对姿态(位置和方向)。这种技术可以应用于机器人和增强/虚拟现实等领域。这篇文章的主要贡献是提出了一种利用姿态标签来学习场景的三维几何信息,并利用几何信息来估计相机姿态的方法。具体来说,作者设计了一个学习模型,它可以从图像中预测两种三维几何表示(X, Y, Z坐标),一种是相机坐标系下的,另一种是全局坐标系下的。然后,通过将这两种表示进行刚性对齐,就可以得到与姿态标签匹配的姿态估计。这种方法还可以引入额外的学习约束,比如最小化两种三维表示之间的对齐误差,以及全局三维表示和图像像素之间的重投影误差,从而提高定位精度。在推理阶段,模型可以实时地从单张图像中估计出场景的三维几何信息,并通过对齐得到姿态。作者在三个常用的视觉定位数据集上进行了实验,进行了消融分析,并证明了他们的方法在所有数据集上都超过了现有的回归方法的姿态精度,并且可以实时地从单张图像中估计出场景的三维几何信息,并通过对齐得到姿态。

02

论文翻译 | 多鱼眼相机的全景SLAM

提出了一种基于特征的全景图像序列同时定位和建图系统,该系统是在宽基线移动建图系统中从多鱼眼相机平台获得的.首先,所开发的鱼眼镜头校准方法结合了等距投影模型和三角多项式,以实现从鱼眼镜头到等效理想帧相机的高精度校准,这保证了从鱼眼镜头图像到相应全景图像的精确转换.其次我们开发了全景相机模型、具有特定反向传播误差函数的相应束调整以及线性姿态初始化算法.第三,实现的基于特征的SLAM由初始化、特征匹配、帧跟踪和闭环等几个特定的策略和算法组成,以克服跟踪宽基线全景图像序列的困难.我们在超过15公里轨迹的大规模彩信数据集和14000幅全景图像以及小规模公共视频数据集上进行了实验.

02

反向传播算法推导-卷积神经网络

在SIGAI之前的公众号文章“反向传播算法推导-全连接神经网络”中,我们推导了全连接神经网络的反向传播算法。其核心是定义误差项,以及确定误差项的递推公式,再根据误差项得到对权重矩阵、偏置向量的梯度。最后用梯度下降法更新。卷积神经网络由于引入了卷积层和池化层,因此情况有所不同。在今天这篇文章中,我们将详细为大家推导卷积神经网络的反向传播算法。对于卷积层,我们将按两条路线进行推导,分别是标准的卷积运算实现,以及将卷积转化成矩阵乘法的实现。在文章的最后一节,我们将介绍具体的工程实现,即卷积神经网络的卷积层,池化层,激活函数层,损失层怎样完成反向传播功能。

03

计算机视觉-相机标定(Camera Calibration)

在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立摄像机成像的几何模型,这些几何模型参数就是摄像机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定。简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵 P P P的过程。 无论是在图像测量或者机器视觉应用中,摄像机参数的标定都是非常关键的环节,其标定结果的精度及算法的稳定性直接影响摄像机工作产生结果的准确性。因此,做好摄像机标定是做好后续工作的前提,是提高标定精度是科研工作的重点所在。其标定的目的就是为了相机内参、外参、畸变参数。

01

OpenCV实现SfM(四):Bundle Adjustment

在上一篇文章中,成功将三维重建扩展到了任意数量的图像,但是,随着图像的增多,累计误差会越来越大,从而影响最终的重建效果。要解决这个问题,需要用到Bundle Adjustment(下文简称BA)。 BA本质上是一个非线性优化算法,先来看看它的原型 min ⁡ x ∑ i ρ i ( ∣ ∣ f i ( x i 1 , x i 2 , . . . , x i k ) ∣ ∣ 2 ) \min_x \sum_i{\rho_i(||f_i(x_{i1}, x_{i2}, …, x_{ik})||^2)} xmin​i∑​ρi​(∣∣fi​(xi1​,xi2​,...,xik​)∣∣2) 其中 x x x是我们需要优化的参数, f f f一般称为代价函数(Cost Function), ρ \rho ρ为损失函数(Loss Function)。其中 f f f的返回值可能是一个向量,因此总的代价取该向量的2-范数。 对于三维重建中的BA,代价函数往往是反向投影误差,比如我们需要优化的参数有相机的内参(焦距、光心、畸变等)、外参(旋转和平移)以及点云,设图像 i i i的内参为 K i K_i Ki​,外参为 R i R_i Ri​和 T i T_i Ti​,点云中某一点的坐标为 P j P_j Pj​,该点在 i i i图像中的像素坐标为 p j i p_j^i pji​,则可以写出反向投影误差 f ( K i , R i , T i , P j ) = π ( K i [ R i T i ] P j ) − p j i f(K_i, R_i, T_i, P_j)=\pi(K_i[R_i\ \ T_i]P_j) – p_j^i f(Ki​,Ri​,Ti​,Pj​)=π(Ki​[Ri​ Ti​]Pj​)−pji​ 上式中的 P j P_j Pj​和 p j i p_j^i pji​均为齐次坐标,其中 π \pi π为投影函数,有 π ( p ) = ( p x / p z , p y / p z , 1 ) \pi(p)=(p_x/p_z,\ p_y/p_z,\ 1) π(p)=(px​/pz​, py​/pz​, 1). 而损失函数 ρ \rho ρ的目的是为了增强算法的鲁棒性,使得算法不易受离群点(Outliers)的影响,常见的有Huber函数、Tukey函数等,这些函数的图像如下

02

U-Net: Convolutional Networks for Biomedical Image Segmentation

人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,它依赖于数据扩充的强大使用,以更有效地使用可用的带注释的样本。该体系结构由捕获上下文的收缩路径和支持精确定位的对称扩展路径组成。我们证明这样的网络可以从非常少的图像端到端的训练,并且在ISBI挑战中在电子显微镜栈中神经结构的分割上胜过先前的最佳方法(滑动窗口卷积网络)。我们使用相同的网络训练透射光学显微镜图像(相位对比和DIC),在2015年ISBI细胞跟踪挑战赛中,我们在这些类别中获得了巨大的优势。此外,网络速度很快。在最近的GPU上,512x512图像的分割需要不到一秒的时间。

03
领券