是:
Jupyter 创始人 Fernando Pérez 的说法,他最初的梦想是做一个综合 Ju (Julia)、Py (Python)和 R 三种科学运算语言的计算工具平台,所以将其命名为 Ju-Py-te-R。发展到现在,Jupyter 已经成为一个几乎支持所有语言,能够把软件代码、计算输出、解释文档、多媒体资源整合在一起的多功能科学运算平台。
Stable Diffusion 2.0在前几天已经发布了,新版本在上一个版本的基础上进行了许多改进。OpenCLIP中新的深度检测和更好的文本到图像模型是主要的改进之一。
Anaconda介绍CentOS 7安装Anaconda3conda命令使用介绍帮助目录检查conda版本升级当前版本的conda环境管理列出所有的环境安装一个不同版本的python新环境复制一个环境创建一个新环境导出环境,Anaconda支持导入导出以方便迁移导入环境信息,即根据配置文件创建一个新环境:移除环境激活进入环境,请使用停用一个活动环境,请使用包管理查看已安装包向指定环境中安装包从Anaconda.org安装一个包通过pip命令来安装包conda配置添加镜像源查看当前镜像源删除镜像源设置安装时显示源url,不想就改为no查看源全部设置,包括链接、show_channel_urls 值:查看conda配置文件其他注意事项安装conda后命令行前出现的base,取消每次启动自动激活conda的基础环境
参考的地址:https://zhuanlan.zhihu.com/p/32925500
为了创建一个新的环境, 需要使用 create 命令, 后面跟上你想要创建环境的名字:
朋友们,我是用Anaconda数据科学套件构建Python和数据科学与人工智能的工作环境,不知大家也是否这样。本文总结我常用的6个conda命令,这6个命令给我带来这些好处,一是,帮助我更好地管理和使用Anaconda这个软件和平台;二是,利用这些命令,可以提升我的工作效率。比方说,采用命令方式,可以在base环境的基础上,创建以目的为导向的新的工作环境,我就创建了一个专门用于做数据科学学习和实践的环境,把与数据科学相关问题和任务,全部切换到这个工作环境下解答和完成。
TensorFlow是Google推出的深度学习框架,也是使用最广泛的深度学习框架。目前最新的TensorFlow版本是2.1。可能有很多同学想跃跃欲试安装TensorFlow2,不过安装完才发现,TensorFlow2与TensorFlow1的差别非常大,基本上是不兼容的。也就是说,基于TensorFlow1的代码不能直接在TensorFlow2上运行,当然,一种方法是将基于TensorFlow1的代码转换为基于TensorFlow2的代码,尽管Google提供了转换工具,但并不保证能100%转换成功,可能会有一些瑕疵,而且转换完仍然需要进行测试,才能保证原来的代码在TensorFlow2上正确运行,不仅麻烦,而且非常费时费力。所以大多数同学会采用第二种方式:在机器上同时安装TensorFlow1和TensorFlow2。这样以来,运行以前的代码,就切换回TensorFlow1,想尝鲜TensorFlow2,再切换到TensorFlow2。那么具体如何做才能达到我们的目的呢?本文将详细讲解如何通过命令行的方式和PyCharm中安装多个Python环境来运行各个版本TensorFlow程序的方法。
-n, –name:我们可以根据环境名称来创建一个 conda 环境,假设我们的环境名称为 my_env
conda 是开源包(packages)和虚拟环境(environment)的管理系统。
之前使用AIGC生成图片,一般都是生成512*512的图,然后再进行放大,以达到高清出图的要求。但是这里有个问题是底模其实都是海量的512*512图片训练出来的,所以出图效果上经常不如人意,在细节上会差一些。这次SDXL1.0直接使用1024*1024的海量图片训练底模,而且分为了文生图用的base模型和图生图进行优化和放大的refiner模型,从而在开源免费的文生图软件上实现了不输于Midjourney的出图效果。
通常我们的web应用都是部署再Liunx环境里面的,但是由于一些历史原因,例如旧系统使用的是.Net,在不增加新服务器的情况下,我们只能选择使用windows server环境来部署了。
conda包管理器可以创建,导出,列出,移除以及更新python环境,而且python环境可以使用不同版本的python,并且安装不同的安装包。在每一个环境之间进行切换称为激活环境。你也可以和别人共享环境文件。
目前正在学习tensorflow库的深度学习的一些知识,安装和环境配置过程做个记录。
此时,可以看到括号里的名称已经从python_test1变成了base,就代表退出了虚拟环境
一句话说明ArcPy是什么:ArcPy是一个 Python 站点包,可提供以实用高效的方式通过 Python 执行地理数据分析、数据转换、数据管理和地图自动化。可以通过ArcPy调用ArcGIS Pro中几乎所有的工具,将其与其他Python工具结合使用,形成自己的工作流程。
如果conda中没有需要安装的包。需要再Anaconda.org中查找。 现在Anaconda.org网站中查找到指定的包,执行显示的下载名命令:
在认识 Anaconda 之前,先认识一下conda,Conda是在Windows、macOS和Linux上运行的开源软件包管理系统和环境管理系统。它可以快速安装、运行和更新软件包及其依赖项。那么既然都是用来安装包的,Conda和pip有啥区别呢?主要区别如下:
OmicVerse是用Python进行多组学(包括Bulk和单细胞分析)的基础框架。前面我们在<生信技能树>公众号宣传过一波; Python的转录组学分析框架与生态,因为是需要去github点star后发邮件才能进群交流,所以操作门槛有点高, 我们后续再次开放拉群小助手给大家哈。
Sh00t是一个高可定制的渗透测试管理工具,它强调让测试人员手动进行安全测试,并让你专注于执行安全测试任务的本身。此外,Sh00t还为我们提供了测试用例的待办事项清单,以及可以使用自定义的漏洞报告模板来生成漏洞报告。
本文主要介绍从GitHub或Gitee等使用Git技术的网络仓库拉取到本地,并配置开发环境进行开发的步骤。
Python是一种面向对象的解释型计算机程序设计语言,其使用,具有跨平台的特点,可以在Linux、macOS以及Windows系统中搭建环境并使用,其编写的代码在不同平台上运行时,几乎不需要做较大的改动,使用者无不受益于它的便捷性。
当我们使用服务器分析数据,我们使用miniconda,如果在自己的电脑上使用anaconda。Anaconda安装网上有很多教程,也可以在淘宝上买个安装服务(至少节省一上午时间)。
在使用 python anaconda时,经常会用到很多常用操作,记录下来,方便以后更好地使用:
Python 深度学习AI - 声音克隆、声音模仿,是一个三阶段的深度学习框架,允许从几秒钟的音频中创建语音的数字表示,并用它来调节文本到语音模型,该模型经过培训,可以概括到新的声音。
选自GitHub 机器之心编译 参与:李泽南、黄小天 AllenNLP 可以让你轻松地设计和评估几乎所有 NLP 问题上最新的深度学习模型,并同基础设施一起让这些模型自由运行在云端和你的笔记本电脑上。 链接:http://allennlp.org (http://allennlp.org/) GitHub:https://github.com/allenai/allennlp Allen NLP 是一个基于 Apache 2.0 的 NLP 研究库,构建于 PyTorch 之上,可为开发者提供语言任务中的各
下载安装包 -- bash 安装 -- 接受协议 -- 选择默认安装路径(回车) -- 重新激活环境 -- 调用帮助文档
在长长的列表里,往下翻(或者用ctrl+f搜索关键词miniconda3-latest)找到:Miniconda3-latest-Linux-x86_64.sh找到之后右键,复制链接地址用wget -c进行下载
直接去anaconda官网下载安装文件即可,具体网站自行搜索。 官网提供linux版本,windows版本,mac版本。 同时提供Anaconda完整版和miniconda最小版(无软件界面的,仅支持命令行执行),新手推荐使用Anaconda版,熟悉之后推荐改用miniconda版,占用存储空间小,使用起来感受一样。
3.CUDA版本必须≥11.0 因为Windows环境下的pytorch只支持11.0以上的CUDA
conda分为anaconda和miniconda。anaconda是包含一些常用包的版本(这里的常用不代表你常用 微笑.jpg),miniconda则是精简版,需要啥装啥,所以推荐使用miniconda。
最新 Anaconda 中,默认安装 Python 3.8.3,因为某些原因需要使用 Python 3.7
内容一览:TVM 共有三种安装方法:从源码安装、使用 Docker 镜像安装和 NNPACK Contrib 安装。本文重点介绍如何通过源码安装 TVM。
本文由腾讯云+社区自动同步,原文地址 https://stackoverflow.club/use-conda-in-anaconda/
Anaconda是一个开源的Python发行版本,包含了conda、Python等180多个科学包及其依赖项,可以用于包管理器和环境管理。比如A项目中用了Python2,而B项目使用Python3,而同时安装两个Python版本可能会造成许多混乱和错误,这是使用Anaconda就可以为不同的项目建立不同的运行环境。
windows 上安装了conda 之后,不像linux 和 Mac,这个逼要手动激活,每次我打开terminal , 都要执行一次,操 。
pip uninstall torch pip install torch==0.4.0
gff/gtf:9列,序列名字,注释来源,基因结构,起始位置,终止位置,碱基测序结果可信度,链的+向与-向,密码子偏移,其他属性
如果你要决定用conda管理Python版本及包那么你有两个选择,安装Anaconda或者Miniconda,下面简单说明区别:
正如我们在我们的 论文[3] 和 网站[4]中详细介绍的,OpenVoice的优势有三个方面:
最近,Cognition AI的首席执行官Steven Hao给了Devin访问自己帐户的权限,然后Devin便开始为他工作了...
为了方便演示,这里我把端口号改成8188,默认是7860;因为我之前部署的comfyui的端口号是8188,你们可以根据自己的情况来。
我们一直想提高生产率-在相同的时间量内,我们可以完成更多的工作。数据科学研究人员也是如此。设置好硬件之后,就该考虑如何选择启动数据科学项目所需的软件了。问题在于市场上有太多选择,并且出于学习目的,您可能已经尝试过其他工具。换句话说,您的购物清单太长,您可能迷路了,不应该上手。
生物信息学的日常就是利用五花八门的工具和各种各样的数据打交道,很多时候需要在命令行安装软件或者包。我相信每一个生信人都碰到过安装软件或包时无法解决依赖的囧况,安装软件或者包,听起来是一件很简单的一件事,实际情况却不是如此。比如说编译时碰到系统lib不存在或版本太低,安装一个python/R包却需要升级当前的python/R,而这又会导致之前安装好的包不能使用。今天给大家介绍一下跨平台包管理神器Anaconda,学习一下它在Linux下的正确使用姿势。
是一个安装、管理python相关包的软件,还自带python、Jupyter Notebook、Spyder,有管理包的conda工具,非常有用。
本文重点分享Python的包管理工具和环境管理工具:conda。 未来的日子中,期待和大家一起成长,一起分享高质量原创文章
Python易用,但用好却不易,其中比较头疼的就是包管理和Python不同版本的问题,特别是当你使用Windows的时候。为了解决这些问题,有不少发行版的Python,比如WinPython、Anaconda等,这些发行版将python和许多常用的package打包,方便pythoners直接使用,此外,还有virtualenv、pyenv等工具管理虚拟环境。
领取专属 10元无门槛券
手把手带您无忧上云