版权声明:本文为博主原创文章,转载请注明出处 R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快。...因此,在对大数据处理上,使用data.table无疑具有极高的效率。这里主要介绍在基因组数据分析中可能会用到的函数。...C代码 data.table TRUE返回data.table,FALSE返回data.frame 可见1.8GB的数据读入94秒,读入文件速度非常快 fwrite 对数据框数据进行处理后...或者会更加方便,如下 melt 和reshape2包的melt一样,融合表格,这个是用C语言写的,处理速度更快。...之间的geneID,可以用beween foverlaps 寻找重叠的区域,返回index对,x是数据很大但都是小区域的data.table,用来检索,y是检索用的资料,数据较小,都是大区域。
p=13546 ---- 变量重要性图是查看模型中哪些变量有趣的好工具。由于我们通常在随机森林中使用它,因此它看起来非常适合非常大的数据集。...大型数据集的问题在于许多特征是“相关的”,在这种情况下,很难比较可变重要性图的值的解释。...例如,具有两个高度相关变量的重要性函数为 看起来 比其他两个 要 重要得多,但事实并非如此。只是模型无法在 和 之间选择 :有时会 被选择,有时会被选择 。...实际上,我想到的是当我们考虑逐步过程时以及从集合中删除每个变量时得到的结果, apply(IMP,1,mean)} 在这里,如果我们使用与以前相同的代码, 我们得到以下图 plot(C,VI[2,],type...关联度接近1时,与具有相同 ,并且与蓝线相同。 然而,当我们拥有很多相关特征时,讨论特征的重要性并不是那么直观。
p=13546 ---- 变量重要性图是查看模型中哪些变量有趣的好工具。由于我们通常在随机森林中使用它,因此它看起来非常适合非常大的数据集。...大型数据集的问题在于许多特征是“相关的”,在这种情况下,很难比较可变重要性图的值的解释。 为了获得更可靠的结果,我生成了100个大小为1,000的数据集。...顶部的紫色线是的可变重要性值 ,该值相当稳定(作为一阶近似值,几乎恒定)。红线是的变量重要性函数, 蓝线是的变量重要性函数 。例如,具有两个高度相关变量的重要性函数为 ?...实际上,我想到的是当我们考虑逐步过程时以及从集合中删除每个变量时得到的结果, apply(IMP,1,mean)} 在这里,如果我们使用与以前相同的代码, 我们得到以下图 plot(C,VI[2,]...然而,当我们拥有很多相关特征时,讨论特征的重要性并不是那么直观。
前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...☞R生成临床信息统计表 ☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 接下来我们先读入临床数据 #读取临床数据 clin=read.table("clinical.tsv...参考资料: ☞【R语言】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表...☞玩转TCGA临床信息 ☞TCGAbiolinks获取癌症临床信息 ☞肿瘤TNM分期 ☞R替换函数gsub
当我们探索如何将这两种语言在人工智能数据分析中交互和融合时,便开启了一段充满无限可能的创新之旅。在实际的人工智能数据分析项目中,为什么要考虑 C 语言与 R 语言的交互融合呢?...例如,在一个生物信息学的基因数据分析项目中,C 语言负责从基因测序设备读取原始的基因序列数据,并将其映射到共享内存区域,R 语言则可以直接对共享内存中的数据进行基因序列的比对、变异分析等统计操作,大大加快了数据分析的速度...在人工智能数据分析的模型训练和优化过程中,C 语言与 R 语言的交互也有着独特的应用场景。...C 语言与 R 语言在人工智能数据分析中的交互和融合为我们提供了一种强大而灵活的数据分析解决方案。...无论是在科研领域的大数据研究,还是在工业界的智能决策支持系统中,这种跨语言的协同工作模式都将为我们开启新的数据分析之门,助力我们在人工智能的浪潮中更好地挖掘数据的宝藏,推动相关领域的不断发展和进步。
功能介绍 大数据时代,我们需要一个强大的软件Runing!!!R语言出现了!!!这里是R语言最好的学习交流平台,包括R语言书籍,R语言课程,R语言程序包使用,教你获取数据,处理数据,做出决策!!...1 万亿元 每款能成功面市的新药的平均研发时间是 12 年 平均每款药物的研发成本约为 50 亿元 实验室中筛选的化合物只有大约 1/1000 能够进入到人体试验阶段 ?...知识无极限 6、回复“啤酒”查看数据挖掘关联注明案例-啤酒喝尿布 7、回复“栋察”查看大数据栋察——大数据时代的历史机遇连载 8、回复“数据咖”查看数据咖——PPV课数据爱好者俱乐部省分会会长招募 9、...回复“每日一课”查看【每日一课】手机在线视频集锦 PPV课大数据ID: ppvke123 (长按可复制) 大数据人才的摇篮!...专注大数据行业人才的培养。每日一课,大数据(EXCEL、SAS、SPSS、Hadoop、CDA)视频课程。大数据资讯,每日分享!数据咖—PPV课数据爱好者俱乐部!
前面介绍过,通过readr、readxl两个包可以将文件中的数据读入为数据框。...其实,我们还可以在 R 里直接模拟出符合特定分布的数据,R 提取了一些以“r”开头的函数来实现,常见的有下面这 4 个: rnorm,生成服从正态分布的随机数 runif,生成均匀分布的随机数 rbinom...,生成服从二项分布的随机数 rpois,生成服从泊松分布的随机数 例如: r1 = rnorm(n = 1000, mean = 0, sd = 1) r2 = runif(n = 1000, min...= 0, max = 100) r3 = rbinom(n = 1000, size = 100, prob = 0.1) r4 = rpois(n = 1000, lambda = 1) 正态分布...hist(r1) 均匀分布 hist(r2) 二项分布 hist(r3) 泊松分布 hist(r4) 写在最后 模拟数据有些时候是非常很有用的,特别是在学习统计作图时。
马尔科夫性 如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程。...HMM在波动率市场中的应用 输入是:ATR(平均真实波幅)、log return 用的是depmixS4包 模型的输出并不让人满意。 HS300测试 去除数据比较少的9支,剩291支股票。...–训练数据:上证指数(2007:2009) –回测数据:沪深300成分股( 2010:2015) 平均下来收益率比银行里的一些理财(一般5-6%)好一些。但是人家的风险比这个的低啊!...训练数据:上证指数的2007~2009 测试数据:沪深300成份股2010~2015 交易规则:longmode在样本内收益最大对应的隐状态 & shortmode在样本内收益最大对应的隐状(交集)...(当然,需要更多的测试,比如在全股票市场或者在商品/期货/外汇/黄金上,或者更长的数据上测试) (ps:在291支股票上测试一次HMM大概需要8-10分钟,50次差不多要一个后半夜!!!)
TRICONEX 3636R 服务器中聚合来自多个来源的数据图片在异构计算平台上节省资源和可普遍部署的应用程序在工业数据方面为工业4.0提供了新的世界。...容器应用程序是提供严格定义的功能的小软件模块,是自动化世界中聪明的数据管理的一个例子。Softing推出了一个新的产品系列,将容器技术用于西门子和Modbus控制器。...背后的想法如前所述,容器应用程序是具有精确定义的功能的软件模块,允许新的部署选项,为自动化技术带来许多好处。好处是运行在不同计算机平台上的低资源、通用的应用程序或软件的实际隔离、封装和可移植性。...这确保了容器应用程序总是行为一致,而不管它在什么环境中执行。下载后,容器应用程序可以在几秒钟内使用单个命令行进行部署,并且在生产级别提供了实现简单集中管理的优势。...这可以在内部使用设备管理系统(DMS)或在云环境中完成(例如微软Azure物联网边缘, AWS物联网绿草),而且随着机器工作负载的变化,工作TRICONEX 3351TRICONEX AI3351 TRICONEX
由于数据的对数规范版本几乎是正常的单峰数据,因此可以将权重用于推断统计中的后续分析。 女性参加者比男性参加者更多,其幅度大大超过美国的总人口。这可能表明抽样方法在性别抽样方面并非完全随机。...但是,数据样本足够大,可以继续评估健康风险因素。 年龄范围似乎在两端都偏向极端。 在比较年龄和体重时,性别的体重分布似乎确实存在明显差异。男性似乎比女性重。...(变量:性别,X_ageg5yr,weight2,diabete3) 当观察样本中的女性和男性参与者时,报告的糖尿病比率非常相似。...报告患有糖尿病的患者似乎在每个年龄段都较重。报告患有糖尿病的年轻患者似乎比老年患者具有更大的体重范围。虽然尚不清楚年龄与糖尿病和体重之间的关系,但应进一步探讨这种关系。...第4部分:结论 从数据的初步探索中可以明显看出,某些功能具有比其他功能更强的相关性。体重与性别有关。性别似乎与体重无关。但是,糖尿病似乎与年龄有关,而与体重密切相关。
R语言如何导入其他统计软件中的数据? R导入SAS数据集可以使用 foreign 包中的 read.ssd() 和 Hmisc 包中的 sas.get() 。...在SAS中使用 PROC EXPORT 将SAS数据集保存为一个逗号分隔的文本文件,使用从.csv格式的文件中导入数据,使用read.csv()函数或者read.table()函数。...或者 一款名为Stat/Transfer的商业软件将SAS数据集为R数据框。...R导入SPSS数据集可以通过 foreign 包中的 read.spss()函数 或者Hmisc 包中的 spss.get() 函数。...导入Stata数据集可以通过foreign包中的read.dta()函数。 【温馨提示】foreign包和Hmisc包都是的R的扩展包,因此在使用之前,若是 没有安装,需要先安装。
聚合索引在数据挖掘和推荐系统中也有很多应用。...例如,假设我们有一个包含用户购买记录的集合 purchase,每个文档包含以下字段:user_id:用户IDproduct_id:商品IDpurchase_date:购买日期quantity:购买数量我们可以使用聚合索引来计算商品之间的相似度...首先,我们需要创建一个聚合索引:db.purchase.createIndex({ "product_id": 1 })然后,我们可以使用聚合框架来计算商品之间的相似度:db.purchase.aggregate...ID进行分组,然后通过 $lookup 操作将购买同一商品的用户关联起来,再通过 $group 操作统计每个商品和其它商品之间的购买次数。...最后,通过 $sort 操作将结果按照购买次数降序排列,得到商品之间的相似度。
p=6400 众所周知,调整一个或多个基线协变量可以增加随机对照试验中的统计功效。...调整分析未被更广泛使用的一个原因可能是因为研究人员可能担心如果基线协变量的影响在结果的回归模型中没有正确建模,结果可能会有偏差。 建立 我们假设我们有关于受试者的双臂试验的数据。...我们让表示受试者是否被随机分配到新治疗组或标准治疗组的二元指标。在一些情况下,基线协变量可以是在随访时测量的相同变量(例如血压)的测量值。...错误指定的可靠性 我们现在提出这样一个问题:普通最小二乘估计是否是无偏的,即使假设的线性回归模型未必正确指定?答案是肯定的 。...但是,如果我们能够正确指定基线协变量的影响,我们也会看到更大的效率增益。
下载了整个文件夹,并试图读懂它,作者在制作课件时,能看到花了不少的心血。 内部代码满满的细节~ 感兴趣的读者,可以尝试下载并编译,同步学习作者使用的一些技巧。或者“白嫖”作者的模板,改成自己的东西。...你可以先看看小编以前写的入门级教程:R沟通|提升xaringan幻灯片的b格;R沟通|设置xaringan主题;R沟通|用xaringan包制作幻灯片。...作者给出了数据科学中 R 语言教学的 10 个简单准则,分别是: 通过数据分析教学 R 语言 使用参与式现场编码 提供大量练习 提供大量反馈 使用可操作的数据例子 使用真实的、丰富的、但可获得的数据集...提供知识的文化和历史背景 建立安全、包容和受欢迎的社区 使用核对表来集中和促进同伴的学习 让学生做项目 该 slides 中给出了每个准则的具体操作方案。...具体小编就不再重复,感兴趣的读者可以看看。个人感觉国内 R 语言教学上还有很大的改进空间。希望未来我也能在这方面做出自己的一份贡献。下一节的截图,或者搜索源文件观看。
前面给大家介绍过☞R中的替换函数gsub,还给大家举了一个临床样本分类的具体例子。今天我们接着来分享一下如何根据已有的映射关系来对数据框中的数据进行替换。...例如将数据框中的转录本ID转换成基因名字。我们直接结合这个具体的例子来进行分享。...假设我们手上有这个一个转录本ID和基因名字之间的对应关系,第一列是转录本ID,第二列是基因名字 然后我们手上还有一个这样的bed文件,里面是对应的5个基因的CDs区域在基因组上的坐标信息。...接下来我们要做的就是将第四列中的注释信息,从转录本ID替换成相应的基因名字。我们给大家分享三种不同的方法。...参考资料: ☞R中的替换函数gsub ☞正则表达式 ☞使用R获取DNA的反向互补序列
本文将详细介绍如何使用R语言结合PostgreSQL数据库,基于公开数据集构建一个信用评分模型。...1.数据库和数据集的选择 本次分析将使用Kaggle上的德国信用数据集(German Credit Data),并将其存储在PostgreSQL数据库中。...安装PostgreSQL:PostgreSQL是一个强大的开源关系型数据库管理系统,可以方便地处理大规模数据。 安装R和RStudio:R是本次分析的主要编程语言,RStudio作为集成开发环境。...1.数据偏差 1.持续监控模型性能 定义与重要性: 持续监控模型性能是指在模型部署后,定期评估其在新数据上的表现。这是确保模型在实际应用中保持稳定和可靠的关键步骤。...# 使用R语言中的ETL包(如odbc、dbplyr)自动化数据处理 library(odbc) library(dbplyr) # 连接数据库 con <- dbConnect(odbc(), "CreditDB
2. jsonlite 类似于Python中的json库,参考前文 [[原]数据流编程教程:R语言与非结构化数据共舞](https://segmentfault.com/a/11......(): 按列变量选择 filter(): 按行名称分片 slice(): 按行索引分片 mutate(): 在原数据集最后一列追加一些数据集 summarise(): 每组聚合为一个小数量的汇总统计,通常结合...3. purrr purrr向Scala这样的具有高级类型系统的函数式编程语言学习,为data frame的操作提供更多的函数式编程方法,比如map、lambda表达式。...数据建模 broom 1. broom 在机器学习的本质其实就是各种姿势的回归,而在R中的各种回归分析往往不会返回一个整齐的data frame 结果。...DataFrame优化 1. data.table 众所周知,data.frame的几个缺点有: (1)大数据集打印缓慢 (2)内部搜索缓慢 (3)语法复杂 (4)缺乏内部的聚合操作 针对这几个问题,data.table
在实际应用场景下,虽然SQL(SQL类专业的etl语言)是数据处理的首选明星语言,性能佳、效率高、容易培养数据思维,但是SQL没法处理构建全流程的数据任务,之后仍然需要借助其他数据分析工具来对接更为深入的分析任务...R语言作为专业的统计计算语言,数据处理是其一大特色功能,事实上每一个处理任务在R语言中都有着不止一套解决方案(这通常也是初学者在入门R语言时,感觉内容太多无从下手的原因),当然这些不同方案确实存在着性能和效率的绝大差异...合理选择一套自己的数据处理工具组合算是挺艰难的选择,因为这个涉及到使用习惯和迁移成本的问题,比如你先熟知了R语言的基础绘图系统,在没有强大的驱动力的情况下,你可能不太愿意画大把时间去研究ggplot2,...data.table 1、I/O性能: data.table的被推崇的重要原因就是他的IO吞吐性能在R语言诸多包中首屈一指,这里以一个1.6G多的2015年纽约自行车出行数据集为例来检验其性能到底如何,...当整列和聚合的单值同时输出时,可以支持自动补齐操作。 当聚合函数与data.table中的分组参数一起使用时,data.table的真正威力才逐渐显露。 mydata[,.
由于它对实际问题的描述,具有直观性,故广泛应用于物理学、化学、信息论、控制论、计算机科学、社会科学、以及现代经济管理科学等许多科学领域。...source 和target 分别代表网络中要求最大流的起始点和终点,capacity 为边的权重。...该图中任意两顶点之间的最短路程(考虑方向)。 ? 解:这三个问题是图论中的典型问题。首先,应该在R中构造该图,然后分别调用相关命令即可。...由15 – 23 行(最短路矩阵) 可以知道该网络上每两个定点的最短路。如顶点0 到顶点7 的最短路为10(矩阵中第1 行第8 列对应的元素)。...需要说明的是,第6,11 行结果表示这是R软件打开的第35,36 个tk 图形设备,与本题的具体内容无关。
可以证明,在模型2有解的情况下,可以将其化为只含有目标约束的目标规划问题,方法是给所有的绝对约束赋予足够高级别的优先因子,从这个角度来看,线性规划为目标规划的特殊情况,而目标规划则为线性规划的自然推广。...用goalprog包求解目标规划 R中,goalprog包 (Novomestky, 2008) 可以求解形式为模型(3) 的目标规划问题,核心函数为llgp(),用法如下: llgp(coefficients...其中数据框的每一行对应一个软约束条件,objective和 priority 为正整数,分别表示针对第几对偏差变量 (第 n 对偏差变量必须出现在第 n 个目标约束中) 和该偏差变量的优先级别,p 和...例 某工厂生产两种产品,受到原材料供应和设备工时的限制,在单位利润等有关数据已知的条件下,要求制定一个获利最大的生产计划,具体数据见表在决策时,按重要程度的先后顺序,要考虑如下意见: 1.原材料严重短缺...该模型符合模型 (3) 的形式,可以直接调用 llgp() 函数来求解该问题,注意:R中根据achievements数据框中的 priority 来判断绝对优先级别,不用再设置 P1,P2,P3。
领取专属 10元无门槛券
手把手带您无忧上云