首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas切片操作:一个很容易忽视的错误

DataFrame元素都大于3,并根据此更改将所有对应的“ y”值更改为50。...= 50 将新值分配给“ y”列,但在此临时创建的副本上,而不是原始DataFrame上。...这是因为,当我们从DataFrame中仅选择一列时,Pandas会创建一个视图,而不是副本。关于视图和副本的区别,下图最为形象: ?...pandas提供了copy()方法,当我们将命令更新为以下所示的命令时: z = df['y'].copy() 我们将在内存中创建一个具有其自己地址的全新对象,并且对“z”进行的任何更新df都将不受影响...实际上有两个要点,可以使我们在使用切片和数据操作时免受任何有害影响: 避免链接索引,始终选择.loc/ .iloc(或.at/ .iat)方法; 使用copy() 创建独立的对象,并保护原始资源免遭不当操纵

2.4K20

三个你应该注意的错误

我们接下来将深入探讨其中的三个问题。 你是一名在零售公司工作的数据分析师。你被要求分析最近一系列促销活动的结果。在此分析中的一个任务是计算每个促销和总销售数量。...假设促销数据存储在一个DataFrame中,看起来像下面这样(实际上不会这么小): 如果你想跟随并自己做示例,以下是用于创建这个DataFrame的Pandas代码: import pandas as...在Pandas的DataFrame上进行索引非常有用,主要用于获取和设置数据的子集。 我们可以使用行和列标签以及它们的索引值来访问特定的行和标签集。 考虑我们之前示例中的促销DataFrame。...这些方法用于从DataFrame中选择子集。 loc:按行和列的标签进行选择 iloc:按行和列的位置进行选择 默认情况下,Pandas将整数值(从0开始)分配为行标签。...现在让我们使用loc方法执行相同的操作。由于行标签和索引值是相同的,我们可以使用相同的代码(只需将iloc更改为loc)。

9110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从Excel到Python:最常用的36个Pandas函数

    2.清理空格 字符中的空格也是数据清洗中一个常见的问题 #清除city字段中的字符空格 df['city']=df['city'].map(str.strip) 3.大小写转换 在英文字段中,字母的大小写不统一也是一个常见的问题...category列更改为category-size。...在Python中使用split函数实现分列在数据表中category列中的数据包含有两个信息,前面的数字为类别id,后面的字母为size值。中间以连字符进行连接。...函数嵌套到loc的数据提取函数中,将判断结果为Ture数据 提取出来。...这里我们把判断条件改为city值是否为beijing和shanghai。如果是就把这条数据提取出来。 #先判断city列里是否包含beijing和shanghai,然后将复合条件的数据提取出来。

    11.5K31

    数据分析 ——— pandas基础(三)

    S 功能 描述 1 lower() 将Series / Index中的字符串转换为小写字母。 2 upper() 将Series / Index中的字符串转换为大写。...6 cat(sep=' ') 使用给定的分隔符连接序列/索引元素。 7 get_dummies() 用One-Hot Encoded值返回DataFrame。...16 swapcase 将字符串大写的变为小写的,将小写的变为大写的 17 islower() 检查Series / Index中每个字符串中的所有字符是否小写。...下面我们就来看一下具体的例子: 1)lower() 将字符串中的字符均转换成小写字母 import numpy as np import pandas as pd # 处理文本数据 s =...中括号里面也是先行后列,行列标签用逗号分割,与loc不同的之处是,.iloc 是根据行数与列数来索引的。

    1.3K20

    Pandas50个高级操作,必读!

    来源:机器学习杂货店 本文约4000字,建议阅读10分钟 在Pandas对数据的复杂查询、数据类型转换、数据排序、数据的修改、数据迭代以及函数的使用。...(0, 5) # 将列数据中的0换为5df.replace(0, 5) # 将数据中的所有0换为5df.replace([0, 1, 2, 3], 4) # 将0~3全换成4df.replace([0,...100df.replace({'Q1': {0: 100, 4: 400}}) # 将指定列里的指定值替换为另一个指定的值 3、填充空值 df.fillna(0) # 将空值全修改为0#...[df.num >= 60, '成绩'] = '合格'df.loc[df.num < 60, '成绩'] = '不合格' 6、插入列df.insert() # 在第三列的位置上插入新列total...# 将name全部变为小写df.name.apply(lambda x: x.lower()) 3、applymap() 应用在DataFrame的每个元素中。

    1.5K30

    python df 列替换_如何用Python做数据分析,没有比这篇文章更详细的了(图文详情)...

    后面我们将统一以 DataFrame 的简称 df 来命名数据表。  ...主要内容包括对空值,大小写问题,数据格式和重复值的处理。这里不包含对数据间的逻辑验证。  处理空值(删除或填充)  我们在创建数据表的时候在 price 字段中故意设置了几个 NA 值。...1#清除 city 字段中的字符空格  2df['city']=df['city'].map(str.strip)  大小写转换  在英文字段中,字母的大小写不统一也是一个常见的问题。...Excel 中有 UPPER,LOWER 等函数,python 中也有同名函数用来解决大小写的问题。在数据表的 city 列中就存在这样的问题。我们将 city 列的所有字母转换为小写。...将筛选结果按 id 列进行排序。  1#使用“非”条件进行筛选  2df_inner.loc[(df_inner['city'] !

    4.5K00

    7步搞定数据清洗-Python数据清洗指南

    也可以用这两条来看: #1.1查看每一列的数据类型 DataDF.dtypes #1.2有多少行,多少列 DataDF.shape # 2.检查缺失数据 # 如果你要检查每列缺失数据的数量,使用下列代码是最快的方法...#pandas.DataFrame.loc loc这个代码有点像Excel里面的鼠标左键,可以随意拉动你需要的数据进行切片。...五、逻辑问题需要筛选 还是Dataframe.loc这个函数的知识点。 由于loc还可以判断条件是否为True DataDF.loc[:,'UnitPrice']>0 ? ?...(DataDF.loc[:,'InvoiceDate']) 七、处理缺失值 python缺失值有3种: 1)Python内置的None值 2)在pandas中,将缺失值表示为NA,表示不可用not available...DataDF.Country= DataDF.Country.fillna('Not Given') 上面,我们就将“country”整个列使用“”空字符串替换了,或者,我们也可以轻易地使用“Not Given

    4.5K20

    Pandas中高效的选择和替换操作总结

    在本文中,我们将重点介绍在DataFrame上经常执行的两个最常见的任务,特别是在数据科学项目的数据操作阶段。...使用.iloc[]和.loc[]选择行和列 这里我们将介绍如何使用.iloc[] & .loc[] pandas函数从数据中高效地定位和选择行。...我们还可以使用它们来选择列,而不仅仅是行。在下一个示例中,我们将使用这两种方法选择前三列。...所以最好使用.iloc[],因为它更快,除非使用loc[]更容易按名称选择某些列。 替换DF中的值 替换DataFrame中的值是一项非常重要的任务,特别是在数据清理阶段。...比如说将所有WHITE NON-HISPANIC或WHITE NON-HISP都改为WNH。这里我们使用.loc[]函数和' or '语句定位我们正在寻找的种族。然后进行替换赋值。

    1.2K30

    (六)Python:Pandas中的DataFrame

    aaaa  4000 2  bbbb  5000 3  cccc  6000 使用 索引与值                 我们可以通过一些基本方法来查看DataFrame的行索引、列索引和值...        添加列可直接赋值,例如给 aDF 中添加 tax 列的方法如下: import pandas as pd import numpy as np data = np.array([('xiaoming...'pay': 5000, 'tax': 0.05} print(aDF) print("===============================") aDF['tax'] = 0.03 # 将一列修改为相同的值...xiaohong  5000  0.05 3   xiaolan  6000  0.10 5     Liuxi  5000  0.05 =============================== 将一列修改为相同的值...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

    3.8K20

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    (请注意,这可以在带有结构化引用的 Excel 中完成。)例如,在电子表格中,您可以将第一行引用为 A1:Z1,而在 Pandas 中,您可以使用population.loc['Chicago']。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...大小写转换 Excel电子表格提供 UPPER、LOWER 和 PROPER 函数,分别用于将文本转换为大写、小写和标题大小写。...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    数据处理利器pandas入门

    ⚠️ Pandas官方提示:以下切片形式操作在简单的交互式数据分析时是非常友好的,但是如果应用于生产环境尽量使用优化后的一些方法:.at,.iat,.loc,.iloc,.ix等。...:由于数据中包含了时间信息列(date和hour),为了方便操作,我们可以使用以下命令将时间列设置为索引。...: .apply 上面在创建时间索引时便利用了.apply 方法,对date 和 hour列分别进行了数据类型的转换,然后将两个字符串进行了连接,转换为时间。...['AQI', 'PM10', 'PM2.5']]],: 表示 data 中的所有行,idx['1001A', ['AQI', 'PM10', 'PM2.5']] 表示 data 中的指定列,如果将...上述操作返回的列仍然是 MultiIndex,因为此时只有一个站点了,我们可以使用 .xs 方法将列从MultiIndex转换为Index。

    3.7K30

    用 Pandas 进行数据处理系列 二

    loc函数按标签值进行提取iloc按位置进行提取ix可以同时按标签和位置进行提取 具体的使用见下: df.loc[3]按索引提取单行的数值df.iloc[0:5]按索引提取区域行数据值df.reset_index...,然后将符合条件的数据提取出来pd.DataFrame(category.str[:3])提取前三个字符,并生成数据表 数据筛选 使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和...] 使用或进行筛选 df.loc[(df['age'] > 25) | (df['city'] == 'beijing'), ['id', 'city', 'age']] 使用非进行筛选 df.loc[...['min'] ,也可以使用 numpy 中的方法,比如 numpy.min ,也可以传入一个方法,比如: def max_deviation(s): std_score = (s - s.mean...ss.columns.get_level_values(1) print(l1) ss.columns = l0 + '_' + l1 print(ss) ss.reset_index() print(ss) pandas 默认会将分组后将所有分组列放在索引中

    8.2K30

    建议收藏:12个Pandas数据处理高频操作

    简单说说 总结分享 > 1 统计一行/一列数据的负数出现的次数 > 2 让dataframe里面的正数全部变为0 > 3 统计某列中各元素出现次数 > 4 修改表头和索引 > 5 修改列所在位置insert...拷贝 > 12 对于列/行的操作 简单说说 Panda是一个快速、强大、灵活且易于使用的开源数据分析和操作工具,在Python环境下,我们可以通过pip直接进行安装。...pip install pandas 在Python代码中使用pandas首先需要导入,: import pandas as pd 创建一个示例数据: # 统计一行/一列数据的负数出现的次数 df...> 2 让dataframe里面的正数全部变为0 # 直接了当 df[df>0] = 0 df > 3 统计某列中各元素出现次数 默认情况,直接统计出指定列各元素值出现的次数。...> 12 对于列/行的操作 删除指定行/列 # 行索引/列索引 多行/多列可以用列表 # axis=0表示行 axis=1表示列 inplace是否在原列表操作 # 删除df中的c列 df.drop(

    2.7K20
    领券