首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Matlab画图技巧与实例:堆叠图stackedplot

该函数在垂直层叠的单独 y 轴中绘制变量。这些变量共享一个公共 x 轴。 如果 tbl 是表,则该函数绘制变量对行号的图。 如果 tbl 是时间表,则该函数绘制变量对行时间的图。...stackedplot 函数绘制 tbl 的所有数值、逻辑、分类、日期时间和持续时间变量,并忽略具有任何其他数据类型的表变量。...例如,stackedplot(X,Y) 绘制 Y 列对向量 X 的图。 stackedplot(Y) 绘制 Y 的列对其行号的图。x 轴的刻度范围是从 1 到 Y 的行数。...可以将此选项与前面语法中的任何输入参数组合一起使用。名称-值对组设置应用于堆叠图中的所有绘图。将每个属性名称括在引号中。...stackedplot(parent,___) 在 parent 指定的图窗、面板或选项卡中创建堆叠图。选项 parent 可以位于前面的语法中的任何输入参数组合之前。

2.9K30

seaborn的介绍

此特定图显示了提示数据集中五个变量之间的关系。三个是数字,两个是绝对的。两个数值变量(total_bill和tip)确定轴上每个点的位置,第三个(size)确定每个点的大小。...这些表示在其底层数据的表示中提供不同级别的粒度。在最精细的级别,您可能希望通过绘制散点图来查看每个观察,该散点图调整沿分类轴的点的位置,以使它们不重叠: ?...每个不同的图形级别图kind将特定的“轴级”功能与FacetGrid对象组合在一起。例如,使用scatterplot()函数绘制散点图,并使用barplot()函数绘制条形图。...这些函数称为“轴级”,因为它们绘制到单个matplotlib轴上,否则不会影响图的其余部分。...结果是图形级功能需要控制它所处的图形,而轴级功能可以组合成一个更复杂的matplotlib图形,其他轴可能有也可能没有seaborn图: ?

4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Seaborn 基本语法及特点

    Seaborn 中的数据分布型图绘制函数: 分类数据型图 在面对数据组中具有离散型变量(分类变量)的情况时,我们可使用以 X 轴或 Y 轴作为分类轴的绘图函数来绘制分类数据型图。...在面对按数据子集绘图、分行或分列显示子图和不同类型图组合等绘图要求时,多子图网格绘制功能不但可以一次性可视化展示数据集中各变量的变化情况,而且可以减少绘制复杂图的时间。...FacetGrid() 函数可以实现行、列、色调 3 个维度的数值映射,其中,行、列维度与所得的轴阵列有明显的对应关系,色调变量可被视为沿深度轴的第三维,用不同的颜色绘制不同级别的数据。...: PairGrid () 函数 Seaborn 提供的 PairGrid () 函数主要用于绘制数据集中具有成对关系的多子图网格型图。...在 PairGrid () 函数中,每个行和列都会被分配一个不同的变量,这就导致绘制结果为显示数据集中成对变量间关系的图。这种图也被称为“散点图矩阵”。

    27330

    52个数据可视化图表鉴赏

    轴与线之间的区域通常用颜色、纹理和图案填充来强调。通常一个面积图用于比较两个或两个以上的变量。 3.箭头图 箭头图可用作多个饼图的替代品。...4.条形图 条形图是一种用矩形表示分组数据的图表,矩形条的长度与其表示的值成比例。可以垂直或水平绘制条形图。垂直条形图有时也称为折线图。图表的一个轴显示要比较的特定类别,另一个轴表示离散值。...36.雷达图 (LPL打野数据雷达图) 雷达图是一种以二维图的形式显示多元数据的图形方法,该二维图由三个或更多定量变量组成,这些变量从同一点开始在轴上表示。轴的相对位置和角度通常不具信息性。...42.分段条形图 当两个或多个数据集并排绘制并分组在同一轴上的类别下时,可以使用如图的条形图的这种变化。与条形图一样,每个条形图的长度用于显示类别之间的离散数值比较。...例如,如果我们要显示一年的数据,我们可以在图表上为每个月指定一种颜色。 48.流图 这种类型的可视化是堆叠面积图的一种变体,它不是针对固定的直轴绘制值,而是围绕变化的中心基线移动值。

    5.9K21

    50种常见Matplotlib科研论文绘图合集!赶紧收藏~~

    groupby操作涉及拆分对象,应用函数和组合结果的某种组合。这可用于对这些组上的大量数据和计算操作进行分组。 reset_index重置DataFrame的索引,并使用默认值。...如果DataFrame具有MultiIndex,则此方法可以删除一个或多个级别。 6、边缘直方图 (Marginal Histogram) 边缘直方图具有沿 X 和 Y 轴变量的直方图。...28、小提琴图 (Violin Plot) 小提琴图是箱形图在视觉上令人愉悦的替代品。小提琴的形状或面积取决于它所持有的观察次数。但是,小提琴图可能更难以阅读,并且在专业设置中不常用。...40、多个时间序列 (Multiple Time Series) 您可以绘制多个时间序列,在同一图表上测量相同的值,如下所示。...,则可以在右侧的辅助Y轴上再绘制第二个系列。

    4.3K20

    60种常用可视化图表的使用场景——(上)

    多组条形图通常用来将分组变量或类别与其他数据组进行比较,也可用来比较迷你直方图,每组内的每个条形将表示变量的显著间隔。 但缺点是,当有太多条形组合在一起时将难以阅读。...14、不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间的关系,原理类似双向的 100% 堆叠式条形图,但其中所有条形在数值/标尺轴上具有相等长度...此外,雷达图也可用于查看数据集中哪些变量得分较高/低,是显示性能表现的理想之选。 每个变量都具有自己的轴(从中心开始)。所有的轴都以径向排列,彼此之间的距离相等,所有轴都有相同的刻度。...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。...推荐的制作工具有:Arpit Narechania's Block。 30、径向条形图 径向条形图是在极坐标系上绘制的条形图。 虽然看起来很美观,但径向条形图上条形的长度可能会被人误解。

    26910

    可视化图表样式使用大全

    不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间的关系,原理类似双向的 100% 堆叠式条形图,但其中所有条形在数值/标尺轴上具有相等长度,并会被划分成段...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。 树形结构图 ?...散点图 (Scatterplot) 也称为「点图」、「散布图」或「X-Y 点图」,用来显示两个变量的数值(每个轴上显示一个变量),并检测两个变量之间的关系或相关性是否存在。...每个烛台符号沿着 X 轴上的时间刻度绘制,显示随着时间推移的交易活动。 但是,蜡烛图只能显示开盘价和收盘价之间的关系,而非两者之间所发生的事件,因此也无法用来解释交易波动的缘由。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。

    9.4K10

    (数据科学学习手札62)详解seaborn中的kdeplot、rugplot、distplot与jointplot

    x-y轴位置   kernel:字符型输入,用于控制核密度估计的方法,默认为'gau',即高斯核,特别地在2维变量的情况下仅支持高斯核方法   legend:bool型变量,用于控制是否在图像上添加图例...  cumulative:bool型变量,用于控制是否绘制核密度估计的累计分布,默认为False   shade_lowest:bool型变量,用于控制是否为核密度估计中最低的范围着色,主要用于在同一个坐标轴中比较多个不同分布总体...,默认为True   cbar:bool型变量,用于控制是否在绘制二维核密度估计图时在图像右侧边添加比色卡   color:字符型变量,用于控制核密度曲线色彩,同plt.plot()中的color参数,...三、rugplot   rugplot的功能非常朴素,用于绘制出一维数组中数据点实际的分布位置情况,即不添加任何数学意义上的拟合,单纯的将记录值在坐标轴上表现出来,相对于kdeplot,其可以展示原始的数据离散分布情况...三、distplot   seaborn中的distplot主要功能是绘制单变量的直方图,且还可以在直方图的基础上施加kdeplot和rugplot的部分内容,是一个功能非常强大且实用的函数,其主要参数如下

    3.2K50

    常用60类图表使用场景、制作工具推荐!

    不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间的关系,原理类似双向的 100% 堆叠式条形图,但其中所有条形在数值/标尺轴上具有相等长度...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。...散点图 散点图 (Scatterplot) 也称为「点图」、「散布图」或「X-Y 点图」,用来显示两个变量的数值(每个轴上显示一个变量),并检测两个变量之间的关系或相关性是否存在。...每个烛台符号沿着 X 轴上的时间刻度绘制,显示随着时间推移的交易活动。 但是,蜡烛图只能显示开盘价和收盘价之间的关系,而非两者之间所发生的事件,因此也无法用来解释交易波动的缘由。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。

    8.9K20

    数据可视化Seaborn入门介绍

    Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。...的功能,但kdeplot实际上支持更为丰富的功能,比如当传入2个变量时绘制的即为热力图效果。...仍以鸢尾花为例,绘制双变量核密度估计图,并添加阴影得到如下图表: rugplot 这是一个不太常用的图表类型,其绘图方式比较朴素:即原原本本的将变量出现的位置绘制在相应坐标轴上,同时忽略出现次数的影响...它将变量的任意两两组合分布绘制成一个子图,对角线用直方图、而其余子图用相应变量分别作为x、y轴绘制散点图。显然,绘制结果中的上三角和下三角部分的子图是镜像的。...y,绘图的y轴变量 hue,区分维度,一般为分类型变量 同时,relplot可通过kind参数选择绘制图表是scatter还是line类型。

    2.8K20

    60 种常用可视化图表,该怎么用?

    不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间的关系,原理类似双向的 100% 堆叠式条形图,但其中所有条形在数值/标尺轴上具有相等长度...误差线总是平行于定量标尺的轴线,可以是垂直或水平显示(取决于定量标尺是在 Y 轴还是 X 轴上)。 推荐的工具有:AnyChart、Highcharts、plotly、Vega。...散点图 散点图 (Scatterplot) 也称为「点图」、「散布图」或「X-Y 点图」,用来显示两个变量的数值(每个轴上显示一个变量),并检测两个变量之间的关系或相关性是否存在。...每个烛台符号沿着 X 轴上的时间刻度绘制,显示随着时间推移的交易活动。 但是,蜡烛图只能显示开盘价和收盘价之间的关系,而非两者之间所发生的事件,因此也无法用来解释交易波动的缘由。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。

    9K10

    我用Python的Seaborn库,绘制了15个超好看图表!

    这里在x轴上使用花瓣长度,在y轴上使用花瓣宽度。...特征图 特征图可视化了数据集中变量之间的两两关系。 创建了一个坐标轴网格,将所有数值数据点将在彼此之间创建一个图,在x轴上具有单列,y轴上具有单行。...对角线图是单变量分布图,它绘制了每列数据的边际分布。...联合分布图 联合分布图将两个不同类型的图表组合在一个表中,展示两个变量之间的关系(二元关系)。...在上面的图表中,中间区域绘制了散点图,边侧则是密度图。 15. 分类图 cat图(分类图缩写)是Seaborn中的一种图表,可以用来可视化数据集中一个或多个分类变量与连续变量之间的关系。

    84330

    详解seaborn可视化中的kdeplot、rugplot、distplot与jointplot

    Python大数据分析 一、seaborn简介 seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到...:bool型变量,用于控制是否绘制核密度估计的累计分布,默认为False shade_lowest:bool型变量,用于控制是否为核密度估计中最低的范围着色,主要用于在同一个坐标轴中比较多个不同分布总体...,默认为True cbar:bool型变量,用于控制是否在绘制二维核密度估计图时在图像右侧边添加比色卡 color:字符型变量,用于控制核密度曲线色彩,同plt.plot()中的color参数,如'r'...,用于绘制出一维数组中数据点实际的分布位置情况,即不添加任何数学意义上的拟合,单纯的将记录值在坐标轴上表现出来,相对于kdeplot,其可以展示原始的数据离散分布情况,其主要参数如下: a:一维数组,传入观测值向量...默认为True rug:bool型变量,控制是否绘制对应rugplot的部分,默认为False fit:传入scipy.stats中的分布类型,用于在观察变量上抽取相关统计特征来强行拟合指定的分布,下文的例子中会有具体说明

    5K32

    seaborn从入门到精通02-绘图功能概述

    您将注意到,图形级的图与它们的轴级对应图非常相似,但也有一些不同之处。值得注意的是,传说被放置在情节之外。它们的形状也略有不同(稍后会详细介绍)。...例如,我们不需要将每种企鹅的三个分布叠加在同一个轴上,而是可以通过在图的列上绘制每个分布来“面化”它们: penguins = sns.load_dataset(“penguins”,cache=True...相比之下,图形级函数不能(轻易地)与其他图组合。按照设计,它们“拥有”自己的图形,包括其初始化,因此不存在使用图形级函数在现有轴上绘制图形的概念。...实例,该实例具有一些方法,用于以一种关于子图组织的“智能”方式定制图的属性。...在使用图形级函数时,有几个关键的区别。首先,函数本身具有控制图形大小的参数(尽管这些实际上是管理图形的底层FacetGrid的参数)。

    30330

    数据视化的三大绘图系统概述:base、lattice和ggplot2

    数据可视化是数据分析过程中探索性分析的一部分内容,可以直观展示数据集数据所具有的的特征和关联关系等。...: 分类箱图、条形图 1 Lattice绘图系统 特点:一次成图;适用于关系变量间的交互:在变量z的不同水平,变量y如何随变量x变化。...主要变量即为图形的两个坐标轴,其中y在纵轴上,x在横轴上。变形:单变量绘图,用 ~ x 即可;三维绘图,用z ~ x*y;多变量绘图,使用数据框代替y ~ x即可。...A ~ x表示A在纵轴上展示,x在横轴上展示。 条件变量为连续型变量时,要先将其转换成离散型变量。...Split/position 数值型向量,在一页上绘制多幅图形 Type 字符型向量,设定一个或多个散点图的绘图参数,(如p=点,l=线,r=回归,smooth=平滑曲线,g=格点) xlab/ylab

    4.4K30

    python数据科学系列:seaborn入门详细教程

    这是一个基于matplotlib进行高级封装的可视化库,相比之下,绘制图表更为集成化、绘图风格具有更高的定制性。 ?...rugplot 这是一个不太常用的图表类型,其绘图方式比较朴素:即原原本本的将变量出现的位置绘制在相应坐标轴上,同时忽略出现次数的影响。 ? 2....它将变量的任意两两组合分布绘制成一个子图,对角线用直方图、而其余子图用相应变量分别作为x、y轴绘制散点图。显然,绘制结果中的上三角和下三角部分的子图是镜像的。 ?...y轴变量 hue,区分维度,一般为分类型变量 同时,relplot可通过kind参数选择绘制图表是scatter还是line类型。...可用于快速观察点的分布趋势。 ? 4. 回归分析 在查看双变量分布关系的基础上,seaborn还提供了简单的回归接口。

    14.5K68

    Matlab系列之二维图形(下)

    zoom zoom是用于图像缩放,跟随不同的搭配组合,可以实现不同的缩放形式,对应的指令如下表 指令格式 说明 zoom xon 可按x轴进行缩放 zoom yon 可按y轴进行缩放 zoom on 当前图形可缩放...双坐标轴绘图 这个双坐标轴的意思就是把两个不同量纲、不同数量级的自变量对应的因变量绘制在同一张图上,且具有左右两个纵轴,和直接plot(x1,y1,x2,y2)的结果有一点区别,具体的指令是plotyy...语法格式: fplot(fun,limits)%fun是需要绘制的函数,limits代表自变量的取值范围[xmin,xmax],也可限制因变量和自变量的范围[xmin,xmax;ymin,ymax] fplot...%在x轴上采用常用对数进行标定,使用格式和plot相同,以下两个也一样 semilogy(...)%在y轴上采用常用对数进行标定 loglog(...)...特殊图形 从matlab的界面,菜单中的绘图选项,就可以看到除了最常见的plot所得的曲线图以外,还有柱状图、饼状图、直方图等等相对特殊的图形,该部分将介绍几种特殊的图形,如果还有更特殊的图形要求,可以在绘图菜单中

    1.4K20

    高维数据图表(2)——PCA的深入探究

    CCA图的组成元素与解读 坐标轴:代表主成分,x是第一主成分,y轴是第二主成分,以此类推 矢量箭头:代表环境要素,长度越长表示越重要。...在x轴上投影代表对第一主成分的贡献;在y轴上投影代表对第二主成分的贡献 矢量夹角:夹角越小,环境要素之间的相关性越强。其中夹角的cos值是两个环境要素的相关系数。...(3)各变量对主成分的贡献量/权重:这一步是关键,每一个主成分可以看成是所有变量的线性组合,每个变量对主成分的贡献。...(4)矢量箭头绘制:例如两个主成分,每一个变量对这两个主成分都有一个贡献率,就可以确定变量在坐标图上的位置。确定位置后我们使用箭头命令进行绘制,即可得到矢量箭头。...第二幅图对不同的变量扩大倍数和设色,并将样本点合并至一个图中,可以分析出不同成分主要受哪些因素影响,也可以看出城市的相似性等信息。同时也可以看出不同变量对主成分轴的贡献大小与它们之间的相关性。

    1.1K40

    ggplot2--R语言宏基因组学统计分析(第四章)笔记

    空图 应该在aes()函数中指定数据帧中需要绘图的任何信息。在本例中,我们通过aes()函数实现美学映射:分别指定x和y变量。但是,只绘制了一个空白的GGPlot。...第二步,加点 第三步,为了绘制具有平滑曲线的散点图,我们在上一个plot对象中添加了一个名为geom_smooth()的附加几何层。...尺度函数既可用于连续变量,也可用于分类变量。例如,在连续情况下,用刻度填充直方图或密度图;在离散情况下,比例用于填充直方图或条形图,或者在映射颜色、大小或形状时用于散点图。...刻面是在一个图中绘制多个图形。faceting的功能类似于lattice包中的panel。它经常出现在微生物组学研究的出版物上。在ggplot2中,刻面可以通过两种主要方式执行:网格刻面和包裹刻面。...使用facet_grid(公式)在栅格中绘制多个图 数据根据两个或多个变量分成亚组,facet_grid(公式)函数用来生成grid faceting。

    5K20

    原来使用 Pandas 绘制图表也这么惊艳

    数据可视化是捕捉趋势和分享从数据中获得的见解的非常有效的方式,流行的可视化工具有很多,它们各具特色,但是在今天的文章中,我们将学习使用 Pandas 进行绘图。...,它在 x 轴上绘制索引,在 y 轴上绘制 DataFrame 中的其他数字列。...df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据,这些条形图代表不同的组,结果条的高度显示了组的组合结果...='%.f', subplots=True, figsize=(14,8)) Output: 散点图 散点图在 x 和 y 轴上绘制数据点以显示两个变量之间的相关性。...KDE 绘图 我们要讨论的最后一个图是核密度估计,也称为 KDE,它可视化连续和非参数数据变量的概率密度。

    4.6K50
    领券