首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python中得可视化:使用Seaborn绘制常用图表

要引入Seaborn库,使用的命令是: import seaborn as sns 使用Seaborn,我们可以绘制各种各样的图形,如: 分布曲线 饼图和柱状图 散点图 配对图 热力图 在文章中,我们使用从...首先,我们将使用matplotlib绘制图,然后我们将看到它在seaborn中的样子。...使用Matplotlib的散点图 使用Seaborn的散点图 在直方图和散点图的代码中,我们将使用sn .joinplot()。 sns.scatterplot()散点图的代码。...我们在足球比赛中经常看到以下类型的图形, ? 足球运动员的热图 在Seaborn中创建这个类型的图。 我们将使用sn .heatmap()绘制可视化图。...结论 这就是Seaborn在Python中的工作方式以及我们可以用Seaborn创建的不同类型的图形。正如我已经提到的,Seaborn构建在matplotlib库之上。

6.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    干货:12个案例教你用Python玩转数据可视化(建议收藏)

    02 选择Seaborn的调色板 Seaborn的调色板和matplotlib的颜色表类似。色彩可以帮助你发现数据中的模式,也是重要的可视化组成部分。...在这个示例中我将用色条来可视化相对安全的颜色表。这里使用到的是matplotlib众多颜色表中的很小一部分。...07 创建热图 热图使用一组颜色在矩阵中可视化数据。最初,热图用于表示金融资产(如股票)的价格。...Seaborn和matplotlib都能提供小提琴图。在这个示例中我们将使用Seaborn来绘制天气数据的Z分数(标准分数),分数的标准化并不是必需的,但是如果没有它的话小提琴图会很发散。...09 使用蜂巢图可视化网络图 蜂巢图(Hive Plot)是用于绘制网络图的可视化技术。在蜂巢图中我们将边缘绘制为曲线。我们根据属性对节点进行分组,并在径向轴上显示它们。 有些库在蜂窝图方面很专业。

    3.8K41

    精品教学案例 | 利用Matplotlib和Seaborn对苹果股票价格进行可视化分析

    案例中使用Python中的两个常用可视化工具Matplotlib和Seaborn,提高学生绘制常用图表的实践能力。 可视化分析在数据分析中扮演着相当重要的角色。...同时,可以利用grid()函数绘制网格线;默认为False,利用legend()函数设置图例,使用其loc参数设置图例的位置等。另外,Matplotlib允许多条折线绘制在一张图中。...在Seaborn中,可以通过kdeplot()函数绘制核密度图。 绘制2015年成交量的核密度估计。...4.3 散点图 Seaborn中可以使用scatterplot() 函数绘制散点图。...4.6 小提琴图 小提琴图是箱线图和核密度图的结合,在Seaborn中,使用violinplot()函数绘制。

    2.9K30

    12个案例教你用Python玩转数据可视化

    默认的颜色表在matplotlib 2.0中有一些改进,可以在这里查看: http://matplotlib.org/style_changes.html 当然,有些matplotlib的颜色表不支持一些不错的参数...在这个示例中我将用色条来可视化相对安全的颜色表。这里使用到的是matplotlib众多颜色表中的很小一部分。...七、创建热图 热图使用一组颜色在矩阵中可视化数据。最初,热图用于表示金融资产(如股票)的价格。...Seaborn和matplotlib都能提供小提琴图。在这个示例中我们将使用Seaborn来绘制天气数据的Z分数(标准分数),分数的标准化并不是必需的,但是如果没有它的话小提琴图会很发散。...在蜂巢图中我们将边缘绘制为曲线。我们根据属性对节点进行分组,并在径向轴上显示它们。 有些库在蜂窝图方面很专业。同时我们将使用API来划分Facebook用户的图形。

    2.6K30

    商业数据分析比赛实战,内附项目代码

    下图展示了本课程中使用Pandas、 Seaborn等常用工具库绘制的部分图表: 现在教程开始啦~ 创新活力数据分析项目实战开发步骤 数据集简介 数据预处理:清洗、过滤 数据分析:公司 数据分析:人员...# 导入常用库 import numpy as np import pandas as pd import matplotlib. pyplot as plt import seaborn as sns...# 如果我们使用 bar 绘制这个图表, 中文字符会比较难以查看 按时间查看企业总数增长趋势 # 按时间查看企业总数增长趋势 df_gs. groupby(df_gs. index. year) ....T 是一对难兄难弟,常常在一起使用 绘制图表, 展示注册资本随时间变化规律 Out[33] : matplotlib. axes. _subplots....项目代码在课程里,Fork一下就能跑~

    1.6K40

    6个顶级Python可视化库!

    Seaborn Seaborn[3]是一个建立在Matplotlib之上的Python数据可视化库。它提供了一个更高层次的界面,简化了创建具有视觉吸引力的图的过程。...推荐阅读(点击阅读):快速掌握 Seaborn 分布图的 10 个例子, Seaborn 绘制 21 种超实用精美图表, 太厉害了!...在下面的例子中,由于Seaborn的默认设置,计数图在视觉上显得更加吸引人: sns.set(style="darkgrid") titanic = sns.load_dataset("titanic"...推荐阅读(点击阅读):Pandas+Matplotlib+Plotly,完美解决 Python 数据分析问题 优点 与R相似 如果你熟悉在R中创建绘图,并在使用Python时怀念它的功能,Plotly是一个很好的选择...缺点 Altair的简单图表,如柱状图,可能看起来不像Seaborn或Plotly等库中的图表那样有风格,除非你指定自定义风格。

    1.1K11

    大数据应用导论 Chapter05 | 数据可视化

    数据可视化工具: 1、Matplotlib(Python):一个2D绘图库,可以绘制许多高质量的图形 2、Seaborn(Python):Matplotlib基础上的高级绘图库,运用简单的操作就能够画出较为复杂的图形...引入:import matplotlib.pyplot as plt 2、Matplotlib基本图表函数 1. title():图的标题 2. plot():绘制图表 3. show():展示图表...5、一界多图 在一个输出界面中画多个图,构造不同的排版 ① x = np.linspace(-2 * np.pi, 2 * np.pi, 200) y1 = np.sin(x) y2 = np.cos(...三、Seaborn可视化 1、Seaborn基本介绍 安装: 在终端使用pip安装Seaborn: pip install seadorn 使用conda安装Seaborn: conda install...seaborn 使用pip从github上下载: pip install git+https://github.com/mwaskom/seaborn.git 在使用Seaborn前,建议配置的库:

    2.5K20

    比较(一)利用python绘制条形图

    快速绘制 基于seaborn import seaborn as sns import matplotlib.pyplot as plt # 导入数据 tips = sns.load_dataset(...通过seaborn绘制多样化的条形图 seaborn主要利用barplot绘制条形图,可以通过seaborn.barplot[1]了解更多用法 修改参数 import seaborn as sns import...绘制多样化的条形图 seaborn主要利用barh绘制条形图,可以通过matplotlib.pyplot.barh[2]了解更多用法 修改参数 import matplotlib as mpl import...的barplot、matplotlib的bar和pandas的bar快速绘制条形图,并通过修改参数或者辅以其他绘图知识自定义各种各样的条形图来适应相关使用场景。...共勉~ 参考资料 [1] seaborn.barplot: https://seaborn.pydata.org/generated/seaborn.barplot.html [2] matplotlib.pyplot.barh

    16610

    6个顶级Python可视化库

    Seaborn Seaborn[3]是一个建立在Matplotlib之上的Python数据可视化库。它提供了一个更高层次的界面,简化了创建具有视觉吸引力的图的过程。...推荐阅读(点击阅读):快速掌握 Seaborn 分布图的 10 个例子, Seaborn 绘制 21 种超实用精美图表, 太厉害了!...在下面的例子中,由于Seaborn的默认设置,计数图在视觉上显得更加吸引人: sns.set(style="darkgrid") titanic = sns.load_dataset("titanic"...推荐阅读(点击阅读):Pandas+Matplotlib+Plotly,完美解决 Python 数据分析问题 优点 与R相似 如果你熟悉在R中创建绘图,并在使用Python时怀念它的功能,Plotly是一个很好的选择...缺点 Altair的简单图表,如柱状图,可能看起来不像Seaborn或Plotly等库中的图表那样有风格,除非你指定自定义风格。

    91720

    如何使用Python创建美观而有见地的图表

    作者 | Fabian Bosler 来源 | Medium 在今天的文章中,将研究使用Python绘制数据的三种不同方式。将通过利用《 2019年世界幸福报告》中的数据来做到这一点。...惊叹于Python本身或生态系统中众多令人惊叹的开源库之一的简单性和易用性。熟悉的命令,模式和概念越多,那么所有事情就越有意义。 Matplotlib 使用Python进行绘图的情况恰恰相反。...只需要CSV文件,即可使用Python轻松创建。试试看! 目前的工作流程 最终决定使用Pandas原生绘图进行快速检查,并使用Seaborn生成要在报表和演示文稿中使用的图表(在视觉上很重要)。...pip install matplotlib==3.1.0 """ 快速:使用Pandas进行基本绘图 Pandas具有内置的绘图功能,可以在Series或DataFrame上调用它。...看来人均GDP越高,幸福感就越强 配对图 Seaborn对图在一个大网格中绘制了两个变量散点图的所有组合。通常感觉这有点信息过载,但是它可以帮助发现模式。

    3K20

    使用 Pandas 在 Python 中绘制数据

    这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢? 在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。...我们使用的数据是 1966 年至 2020 年的英国大选结果: image.png 自行绘制的数据 在继续之前,请注意你可能需要调整 Python 环境来运行此代码,包括: 运行最新版本的 Python...在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 Pandas 一定能夺冠。...) 只有四行,这绝对是我们在本系列中创建的最棒的多条形柱状图。...与 Seaborn 一样,Pandas 的绘图功能是 Matplotlib 之上的抽象,这就是为什么要调用 Matplotlib 的 plt.show() 函数来实际生成绘图的原因。

    6.9K20

    6个顶级Python可视化库

    几乎所有对数据科学感兴趣的人都可能至少使用过一次Matplotlib。 优点 易于解释的数据属性 在分析数据时,快速了解数据分布情况往往非常有用的。...Seaborn Seaborn[3]是一个建立在Matplotlib之上的Python数据可视化库。它提供了一个更高层次的界面,简化了创建具有视觉吸引力的图的过程。...在下面的例子中,由于Seaborn的默认设置,计数图在视觉上显得更加吸引人: sns.set(style="darkgrid") titanic = sns.load_dataset("titanic"...优点 与R相似 如果你熟悉在R中创建绘图,并在使用Python时怀念它的功能,Plotly是一个很好的选择。它允许你用Python实现同样水平的高质量绘图。...缺点 Altair的简单图表,如柱状图,可能看起来不像Seaborn或Plotly等库中的图表那样有风格,除非你指定自定义风格。

    46520

    万字长文 | 超全代码详解Python制作精美炫酷图表教程

    Seaborn 学习Seaborn能够节省很多精力。Seaborn可以抽象出大量的微调。毫无疑问,这使得图表在美观上得到巨大的改善。然而,它也是构建在matplotlib之上的。...当前工作流程 最后,我决定使用Pandas本地绘图进行快速检查,并使用Seaborn绘制要在报告和演示中使用的图表(视觉效果很重要)。 2. 分布的重要性 ?...小提琴图在绘制大洲与生活阶梯的关系图时,用人均GDP的平均值对数据进行分组。人均GDP越高,幸福指数就越高 配对图 Seaborn配对图是在一个大网格中绘制双变量散点图的所有组合。...Seaborn散点图网格中,所有选定的变量都分散在网格的下半部分和上半部分,对角线包含Kde图。...按大洲划分的生活阶梯直方图 FacetGrid— 带注释的KDE图 还可以向网格中的每个图表添加特定的注释。以下示例将平均值和标准偏差以及在平均值处绘制的垂直线相加(代码如下)。 ?

    3.2K10

    【陆勤践行】Python和数据科学的起步指南

    本文就是在IPyNB中完成的。在Python的会议中,几乎所有的演讲都使用IPython Notebook。Anaconda中预装了IPyNB,可以直接使用。...使用matplotlib重新绘制这幅图的话需要相当多的(丑陋)代码,包括调用scipy执行线性回归并手动利用线性回归方程绘制直线(我甚至想不出怎么在边界绘图,怎么计算置信区间)。...通常我们感兴趣的包含不同的组或类(这种情况下使用pandas中groupby的功能会让人感到很神奇)。...没有seaborn的话,这需要使用pandas的groupby功能,并通过复杂的代码绘制线性回归直线。...因为seaborn只是调用了matplotlib,那时你可能会想学习这个库。然而,对绝大部分工作来说我还是喜欢使用seaborn。

    872100

    在 PySpark 中,如何使用 groupBy() 和 agg() 进行数据聚合操作?

    在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。...显示聚合结果:使用 result.show() 方法显示聚合结果。停止 SparkSession:使用 spark.stop() 方法停止 SparkSession,释放资源。

    9610

    数据可视化详解+代码演练

    我们本篇文章讲的数据可视化是面向开发人员的,是利用python中一些可视化库如:matplotlib或是seaborn通过对数据可视化,来分析数据表格中各维度间的关系或是数据分布的特性,从而有助于我们更好的理解数据...Seaborn的安装也非常的简单,使用pip install seaborn直接安装即可,首先我们来介绍一些Seaborn中的基本绘图函数:折线图:plot()、散点图:lmplot()、柱状图:barplot...案例一:给定数据集航班乘客变化分析data = sns.load_dataset("flights"),利用柱状图分析乘客在一年中各月份的分布情况。...,我么可以看到Seaborn封装的更好,使用起来更简单;但Matplotlib灵活性更高、功能也更加强大。...学习Matplotlib和Seaborn更多的函数、图形的绘制,欢迎大家学习它们的官方手册,这里小编只是做了一个简单的常用整理。

    1.2K40
    领券