也给大家介绍了如何使用R自带的heatmap函数+gplots的配色方案来绘制热图
今天我们接着讲绘制热图时候的一个小技巧,如何显示样本的类型。我们经常还在文章中看到类似下面这样的热图。会在列的上方用颜色标注样本的类型。这样可以一目了然的看出找到的差异表达基因能否很好的将不同类型的样本区分开。今天我们就来用R代码来实现。
今天我们接着来聊heatmap这个函数绘制热图,这次我们使用gplots这个R包里面的配色方案
ggplot2自从2007年推出以来,成为世界范围内下载最频繁、使用最广泛的R包之一。许多人包括ggplot2的创建人Hadley Wickham将这一成功归功于ggplot2背后的哲学。这个软件包的灵感来源于Leland Wilkinson编写的《图形语法》一书,在此书中将graphs 分解成scales和layers,并将原始数据与表现形式分离开。
其实每一张热图后面都对应一个表达矩阵。如上图所示,每一行是一个基因,每一列是一个样本。每一个小的色块,就是这个基因在这个样本中的表达量。只是这里用颜色的深浅来表示基因表达值的高低而已,颜色越红,表达值越高。颜色越蓝表达值越低。
生存分析,survival analysis,是研究影响因素与生存时间和结局的重要方法,直白点说,就是分析“因素”和“生存”是否相关,能够直接将研究的因子和患者最终的预后表型关联起来,其重要性可想而至。
一款提供专业设计配色方案的在线调色板,点击颜色可直接复制色号,然后就可以到Python等编程软件中绘图了
关于配色的话题,已经聊过很多次了,但是就像是之前说过的,对于图形可视化而言,配色决定着作品的“颜值”,谈再多次都不嫌多。 今天是R语言配色系统综合篇的上篇(当然是有下篇啦,下篇将会教你如何优雅的提取各种高大上配色主题,作为己用。经过几天的研究,小魔方已经发现了如果将各种高质量配色包中的主题色板通过函数的形式在高级绘图系统和低级绘图系统之间相互共享)。 今天的内容主要包含两部分: R预置色彩系统的色板 R语言自定义颜色调用 其实在R语言的色彩系统中,有两大类颜色系统,一类是预设的调色盘,通过调色盘,你可以获取
大家好,在这里给大家介绍一下使用ggplot2绘图调色的几种小方法。正所谓绘图十分钟,调色一小时。图片的配色直接决定了图片质量的好坏。下面讲一下我平时绘图用到的调色工具。
在生物信息分析中,经常会做序列分析图(sequence logo),这里的序列指的是核苷酸(DNA/RNA链中)或氨基酸(在蛋白质序列中)。sequence logo图是用来可视化一段序列某个位点的保守性,据根提供的序列组展示位点信息。常用于描述序列特征,如DNA中的蛋白质结合位点或蛋白质中的功能单元。
1 webshot 在 生信星球 公众号看到的推文 听说你的桑基图也无法保存? 主要功能是可以把html文件保存为 png 或者 pdf 格式 2 pez 系统全面的系统发育R包 3 ggprism 在 YuLabSMU 公众号看到的推文 用ggplot2出GraphPad prism的图,坐标轴好多可选 4 r3dmol 在 YuLabSMU 公众号看到的推文 在R中对分子结构进行3D可视化 5 epiR 该包集合了流行病学中诸多描述性分析的函数。其中epi.tests函数专门用于计算诊断试验的灵敏度、特
即便小仙同学决定学习R语言来提升自己作图的“逼格”的时候,心中还有有些疑虑的(嘿嘿,我这么懒,可不愿意做无用功了?)。仔细想了想,貌似又找到了两个学习的理由。 一是R可以帮助我们避免重复劳动,实现“
基因表达的差异性分析是生物信息学中的必经之路。那么,基因表达差异的可视化展示也就具有了很重要的地位。首先我们介绍下目前在基因表达差异性可视化中的集中展示形式:
上面的图是论文中的结果图,最终画出来的图片和这个是有差异的,水平有限,我一般用R画完图后,都会用AI进行修改。
这里将销售部门的业绩分为一卖业绩和复购业绩进行可视化,并且有意思的是使用到了表情符合字体(emojifont拓展包)。整个可视化下面是可视化的效果:
面向对象编程是程序设计中一种重要且高效的编程规范,它区别于常见的面向过程编程。在R语言以及Python的程序包开发过程中,大量使用了面向对象的编程范式。 百度百科关于面向对象编程的权威解释是: 面向对象程序设计(英语:Object-oriented programming,缩写:OOP)是一种程序设计范型,同时也是一种程序开发的方法。其最重要的三大特征是封装、继承、多态。 对象指的是类的实例。它将对象作为程序的基本单元,将程序和数据封装其中,以提高软件的重用性、灵活性和扩展性。 R语言中的面向对象编程是通
之前写了很多网络数据数据抓取的案例,无论是关于R语言还是Python的,里面大量使用xml\html\css\ajax\json等这些概念,可是一直没有对这些概念做详细的梳理,导致很多小伙伴儿看的摸不着头脑。 近期基础的网抓教程告一段落,从今天起,给大家梳理一些常用的web概念(当然是一个外行小白的视角来进行讲解,如有不当之处,还请见谅)。概念的梳理对于整体网抓思路的开拓至关重要。 几天主要围绕三个核心概念来进行介绍: xml html json xml的官方解释是可扩展标记语言,主要用于数据传输,而HTM
原创 黄小仙 即便小仙同学决定学习R语言来提升自己作图的“逼格”的时候,心中还有有些疑虑的(嘿嘿,我这么懒,可不愿意做无用功了?)。仔细想了想,貌似又找到了两个学习R的理由。 一是R可以帮助我们避免
RColorBrewer包提供了3类调色板,用户只需要指定配色方案的名称,就可以用包中的brewer.pal()函数生成颜色。这3类包括:
在上一期☞R语言中的颜色(一)中,我给大家介绍了R中的颜色以及自带的一些配色方案。这一期我给大家介绍一下gplots这个R包中的配色方案。
往期的教程里详细为大家做了R语言安装和环境配置的课程,错过的喵咪们,课前赶紧复习一下吧。生物信息系列课程-R语言入门;挖掘GEO速成SCI文章系列教程(3)-R语言基础。古语云“字如其人”,现在讲“第一印象”,说的都是形象、气质的重要作用,在科研领域而言,规范的、高质量的图片是发表高水平文章的必备条件。有请我们科研猫特聘作图系列讲师,飞飞老师~
randomcoloR和paletteer的使用方式类似,都提供了直观的函数来生成和应用颜色方案。randomcoloR 包可以生成随机的颜色方案,非常适合当你需要快速创建一个颜色方案时使用。
最近在看任坤大神的新作——《R语言编程指南》,其中对于编程语言中非常流行的面向对象编程范式(OOP)在R语言中的实现进行了非常详尽的讲解,强烈推荐各位有志于进阶R语言编程的小伙伴儿进行阅读。 R语言内目前可以实现OOP范式的一共有四套标准:S3、S4、RC、R6,其中关于S3、S4两种范式在早期的各种扩展包中使用比较多,是基于泛型函数而实现的,之前在学习Python的面向对象编程系列时曾经做过粗浅的练习: 左手用R右手Python系列——面向对象编程基础 S3与S4之间的差异: 1.在定义S3类的时候,没
可能在Textmate中有你喜欢或者使用过的主题和语法,并且你想要把它们转换到Atom中。如果是这样的话,你很幸运,因为有很多工具可以用来转换它们。
其中有一个是“老米”投稿:手把手10分文章WGCNA复现:小胶质细胞亚群在脑发育时髓鞘形成的作用 , 里面是有TOM矩阵热图,就是配色很奇怪。所以经常有人询问这个问题:
scico提供 35 种不同的调色板,可以使用scico_palette_show()函数查看
这一篇微信文章是2017年2月写的了,距离现在7年,语言生动有趣跟现在的风格还有点不一样,那时候曾老师竟然一个个回点评还用颜文字嘞,而且17年就自称老一辈的生信工程师(难道现在是木乃伊辈的生信工程师?),感觉好有趣,但是针对R的内容仍然非常准确。
R语言ggplot2作图的时候配色如果不知道如何选择,可以参考如下链接https://r-charts.com/color-palettes/
今天的提问环节是我们第一期可视化课程学员提供的,该同学在学习完我们的第一期课程之后,还是觉得自己的配色不是太好看,让我推荐几个好用的颜色工具包,如下:
Origin软件的数据分析功能非常强大,可以进行常见的统计分析、回归分析、时间序列分析、信号处理等多种分析方法。用户可以通过简单的拖拽和设置参数来完成分析过程,而不需要编写复杂的代码,非常方便。同时,软件还支持Python和R语言的集成,用户可以通过编写脚本来完成复杂的数据分析任务,实现更加自由和灵活的数据分析。此外,Origin软件还提供了多种数据可视化工具,用户可以根据自己的需求选择适合的图表类型,进行自定义设置,实现更好的数据可视化。总的来说,Origin软件是一款功能强大的数据分析工具,既可以通过简单的拖拽和设置参数来完成分析过程,又支持Python和R语言的集成,可以帮助用户更好地处理和分析各种数据。
颜色来源于链接 https://usteamcolors.com/nba-colors/
色盲是并不罕见的一种遗传性疾病,我国男性色盲患病率可达5%,而白人男性更是高达8%。这些色盲患者和我们一样工作在各种领域,在论文送审中也可能会遇到色盲审稿人。假如论文送给三位白人男性审稿人,其中至少一人是色盲的概率高达22%。因此,为论文的图片选取一种对色盲友好的配色方案是很重要的,能确保准确的展示我们的研究成果,同时体现了人性关怀。
R适用于统计分析,绘图的一款编程软件,R属于开源,自由,免费的软件。随着生物信息学的发展,R语言在数据分析和绘制图形上都有着十分重要的优势。尤其是现在大部分科研绘图,都使用R语言来完成的。最近有一位小伙伴要发SCI论文,给我发了3w多条数据,问我可不可以画和下图基本相似的图。大家都知道论文的发表除了实验和数据以外,图片也非常重要。一般图画的越好,那么论文发表的问题也不大。我仔细想了一下自身的实力,觉得可以试一下。那么下面我就用所学R知识不多的情况下教大家绘制这幅SCI配图。
今天不聊关于ggplot图表的知识,我们聊一聊一个提供地图配色方案的网站——ColorBrewer2.org。 不要觉得这样太小题大做(关于图表配色,已经发过N多篇推送),为什么一直在强调配色这个话题,因为它实在是——太很重要了,至少对于实际商务应用场合的数据地图而言…… 我的公众号菜单中,左派第三栏有一篇叫做“图表之道”的文章【其实是在向刘万祥老师致敬(因为它的那本《Excel图表之道》,才有了今天的这个公众号)】,文章中曾讲到过,为何我们要用图表来表达数据信息——视觉信息获取过程中右脑思维的重要性。 而
ROC曲线作为评估模型效能的工具,其使用频率是极其高的,平时我们在做ROC分析的时候会遇到很多问题,比如:
数据处理在数据分析流程中的地位相信大家都有目共睹,也是每一个数据从业者面临的最为繁重的工作任务。 在实际应用场景下,虽然SQL(SQL类专业的etl语言)是数据处理的首选明星语言,性能佳、效率高、容易培养数据思维,但是SQL没法处理构建全流程的数据任务,之后仍然需要借助其他数据分析工具来对接更为深入的分析任务。 R语言作为专业的统计计算语言,数据处理是其一大特色功能,事实上每一个处理任务在R语言中都有着不止一套解决方案(这通常也是初学者在入门R语言时,感觉内容太多无从下手的原因),当然这些不同方案确实存在
最近重复新翻阅R语言领域唯一一本关于网络数据采集的参考书——《基于R语言的自动数据收集》,开篇就是一个数据爬取的案例。 尽管之前已经粗略的看过一遍,但是仍感书中诸多细节不甚理解,还有平时过于眼高手低,第一遍看的时候只是动眼却不动手,案例几乎很少做过,准备刷第二遍,案例也打算仔仔细细的过一遍,做的时候才发现作者书中代码有些部分已经无法运行,还是需要自己去一点儿一点儿倒腾。 library("XML") library("stringr") library("RCurl") library("dplyr") l
今天开始,要跟着大家学习一个新的可视化R包——REmap包。 说起来,这个包要归功于百度的可视化开源项目——echarts,它是国内为数不多的高水平开源可视化js库,在业界地位首屈一指。 经过大神的努力,我们终于可以在R语言中以简洁的REmap函数形式,来调用Echarts核心功能,而不用亲自去学js代码,就可以创建动态地图可视化作品。 如果有小伙伴儿熟悉百度的大数据可视化项目——百度迁徙地图,以及交通通勤图,以及后来的一带一路可视化路线图,肯定对那些动态地图上流动的线条和路径有很深的印象。 下面我们开始简
R语言ggplot2画图如果要更改图片整体的字体可以使用theme()函数设置text参数
今天跟大家分享ggplot图表的配色原理与基本技巧。 图表配色是一个很深奥的话题,多亏了R语言平台的众多开发者贡献的配色包,让图表的配色不再深不可测。 这里我暂且将所有的配色场景划分为两类: 离散变量配色与连续变量配色 ggplot函数的配色机制相对来说比较智能,当你给colour或者fill属性指定给变量映射的时候,该函数就会自动的区分变量属性(是离散变量或者是连续变量),进而给出适用于两种情况的配色风格。 ggplot(diamonds,aes(carat,price,colour=cut))+geom
上述例子中直接将结果进行print,在实际应用中基本不会这么做。一般会将输出结果以向量或其他形式储存。如下:
是时候把生信技能树平台交给后辈了,前面我介绍了;ggplot2绘图基础功不扎实?看完这5个资源 有一个学员从头到尾学完了这些资源,成长为了绘图小牛,还有自己的公众号,我先邀请他投稿一个笔记,后面有机会再推荐他的公众号!
最近有很多人在问我关于R语言学习入门的问题。 有在公众号文章留言的,有后台回复的,有加qq或者微信直接交流的、有知乎私信或者文章留言的,还有微信群里直接@我的。 说实话,这个话题,如果由一个在数据科学领域叱咤多年、项目经验丰富,代码写的很溜的老司机来回答,结果会更有信服力。 而我并不适合来回答这个问题,理由如下: 首先我的学习周期很短,正式开始于2016年的9月份,算起来仅有10个月左右,有点速成的意味; 其次我在学习R语言之前并没有任何的编程基础(如果不算大学修过的SQL和自己只会一点儿皮毛的VBA的话)
介绍完优秀的可视化类别网站后(可视化图表种类不清楚?这两个宝藏参考网址推荐给你~~),这一期,小编就给大家推荐如何去实现那么多种图表的在线可视化技巧(由于小编使用R进行可视化绘制较多,这里主要介绍关于R语言的)。主要内容如下:
早期的数据小魔方用户大概都知道,我最初也是从学习Excel起步的,只是学习的深入了之后,才开开慢慢的迁移到R语言。 我往R语言转型并不代表自己开始放弃Excel或者觉得Excel不适合做可视化,只是想体验一下Excel外围的可视化世界是什么样子的,毕竟在这个大行业内,还活跃着太多可视化领域的佼佼者,譬如 PowerBI、Tableau等。 当然,这些软件各有特点,但是在要划分一个类别的话,我觉得可以划分为三类: Excel(以及寄生于Excel平台的各种辅助软件dashboard、Think-cell-ch
NGS系列文章包括Linux基础 (PATH和path,傻傻分不清)、R基础 (ggplot2高效实用指南 (可视化脚本、工具、套路、配色))、Python基础 (Python学习极简教程)、NGS基础、转录组分析 (Nature重磅综述|关于RNA-seq你想知道的全在这)、ChIP-seq分析 (ChIP-seq基本分析流程)、单细胞测序分析 (重磅综述:三万字长文读懂单细胞RNA测序分析的最佳实践教程 (原理、代码和评述))、DNA甲基化分析、重测序分析、GEO数据挖掘(典型医学设计实验GEO数据分析 (step-by-step) - Limma差异分析、火山图、功能富集)、图形解读 (可视化之为什么要使用箱线图?)、GSEA (一文掌握GSEA,超详细教程)、WGCNA (WGCNA分析,简单全面的最新教程)等内容。
在看一些大牛文章的时候,有时你会惊叹一些图表的配色实在是太漂亮了!如果没有色彩学基础,让我们自己去调出这样的配色可能会很难,那么,如何获取这些配色方案为己所用呢?
AI科技评论消息,近日,kdnuggets做了一个关于数据科学、机器学习语言使用情况的问卷调查,他们分析了954个回答,得出结论——Python已经打败R语言,成为分析、数据科学和机器学习平台中使用频率最高的语言。有关此次问卷更具体的情况如何?AI科技评论将kdnuggets上发表的总结文编译整理如下: 之前我们在kdnuggets上做了这样一个问卷调查,2016、2017两年,在分析、数据科学和机器学习的工作中,你用R语言,还是Python,或两者都用,或选择其他的语言? 通过分析954个回答,我们得出了
领取专属 10元无门槛券
手把手带您无忧上云