今天,咱们来探讨一个有趣却颇具争议的话题:在C#中,我们是否应该将未使用的对象设置为null呢?...将对象设置为NULL能否释放内存? 咱们先来破除这个误区:答案是否定的。 在C#中,垃圾回收器(Garbage Collector,简称GC)负责自动管理内存,确保未使用的对象能被回收。...手动将它们设置为null可确保在不再需要它们时能及时回收。 这只是其中一个好处。 你有没有考虑过这样一种场景:假设有一个类A,它包含一个静态变量aa。当类A被垃圾回收时,静态变量aa会随之被释放吗?...将一个对象设置为null可能会引发NullReferenceException(空引用异常),尤其是在多线程环境中。 想象一下,如果多个线程正在访问同一个对象,而其中一个线程将它设置为了null。...对于简单的数据结构或者像局部变量这样的临时对象,不设置为null可能更合适,因为这样可以降低代码的复杂度。 如果你不确定该怎么做,那就遵循这个简单的规则:将所有对象都设置为null。
也可以简单把 Unity 理解为一个游戏引擎,可以用来专业制作游戏!...---- Unity小知识点学习 层级面板中的 ‘小手指’ 作用: 在Scen中将该物体设置为不可选中状态 在层级面板中有一个小手指一样的图标(我也不知道官方叫啥~) 当我们给物体选上之后,...小手指的作用就是,当我们点了这个小手指,成为一个斜杠似的禁止状态时 在Scene场景中我们就没法通过鼠标来选中这个物体了 ! 演示效果: ----
map()还有一个参数na_action,类似R中的na.action,取值为'None'或'ingore',用于控制遇到缺失值的处理方式,设置为'ingore'时串行运算过程中将忽略Nan值原样返回。...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...当变量为1个时传入名称字符串即可,当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组...3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合,其传入的参数为字典
map()还有一个参数na_action,类似R中的na.action,取值为None或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。...而要想在jupyter notebook/jupyter lab平台上为pandas的apply过程添加美观进度条,可以参照如下示例: from tqdm....三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合。
而在pandas中,针对不同的应用场景,我们可以使用resample()、groupby()以及Grouper()来非常高效快捷地完成此类任务。...图1 2 在pandas中进行时间分组聚合 在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样...常用的固化的时间窗口规则如下表所示: 规则 说明 W 星期 M 月,显示为当月最后一天 MS 月,显示为当月第一天 Q 季度,显示为当季最后一天 QS 季度,显示为当季第一天 A 年,显示为当年最后一天...它通过参数freq传入等价于resample()中rule的参数,并利用参数key指定对应的时间类型列名称,但是可以帮助我们创建分组规则后传入groupby()中: # 分别对苹果与微软每月平均收盘价进行统计
01 如何理解pandas中的groupby操作 groupby是pandas中用于数据分析的一个重要功能,其功能与SQL中的分组操作类似,但功能却更为强大。...0,表示沿着行切分 as_index,是否将分组列名作为输出的索引,默认为True;当设置为False时相当于加了reset_index功能 sort,与SQL中groupby操作会默认执行排序一致,该...---- 04 时间序列的groupby——resample 再次指出,groupby相当于是按照某一规则对数据进行分组聚合,当分组的规则是时间序列时,还存在另一种特殊的分组方式——重采样resample...另外,还可将groupby与resample链式使用,但仅可以是resample在groupby之后,反之则会报错。例如: ?...需要指出,resample等价于groupby操作一般是指下采样过程;同时,resample也支持上采样,此时需设置一定规则进行插值填充。
其中test(x)函数为: def test(x): print(x) 那么打印结果为: ? 可以发现,groupby()后的第一个结果被打印了两次。...对于这种情况,Pandas官方文档的解释是: ? 什么意思呢?就是说,apply在第一列/行上调用func两次,以决定是否可以进行某些优化。...而在pandas==0.18.1以及最新的pandas==0.23.4中进行尝试后发现,这个情况都存在。...在某些情境,例如对groupby()后的dataframe进行apply()批处理,为了避免重复,我们并不想让第一个结果打印出两次。...这里采用的方法是设置标识符,通过判断标识符状态决定是否跳过。
本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。...而要想在jupyter notebook/jupyter lab平台上为pandas的apply过程添加美观进度条,可以参照如下示例: from tqdm....三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在使用pandas分析处理时间序列数据时...而在pandas中,针对不同的应用场景,我们可以使用resample()、groupby()以及Grouper()来非常高效快捷地完成此类任务。 ?...图1 2 在pandas中进行时间分组聚合 在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样...譬如这里的字符串'M'就代表月且聚合结果中显示对应月的最后一天,常用的固化的时间窗口规则如下表所示: 规则 说明 W 星期 M 月,显示为当月最后一天 MS 月,显示为当月第一天 Q 季度,显示为当季最后一天
在本节中,我们将探讨 Pandas 中的聚合,从类似于我们在 NumPy 数组中看到的简单操作,到基于groupby概念的更复杂的操作。...为方便起见,我们将使用display魔术函数,和我们在前面部分中看到的相同: import numpy as np import pandas as pd class display(object):...分组:分割,应用和组合 简单的聚合可以为你提供数据集的风格,但我们通常更愿意在某些标签或索引上有条件地聚合:这是在所谓的groupby操作中实现的。...中的apply()非常灵活:唯一的规则是,函数接受一个DataFrame并返回一个 Pandas 对象或标量;在中间做什么取决于你!...指定分割键 在之前介绍的简单示例中,我们将DataFrame拆分为单个列名。这只是定义分组的众多选项之一,我们将在此处介绍分组规则的其他选项。
inplace参数设置为True以保存更改。我们删除了4列,因此列数从14减少到10。 2.读取时选择特定的列 我们只打算读取csv文件中的某些列。读取时,列列表将传递给usecols参数。...df.isna().sum().sum() --- 0 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观察值(即行)。例如,下面的代码将选择居住在法国并且已经流失的客户。...如果我们将groupby函数的as_index参数设置为False,则组名将不会用作索引。 16.带删除的重置索引 在某些情况下,我们需要重置索引并同时删除原始索引。...重设索引,但原始索引保留为新列。我们可以在重置索引时将其删除。...我们希望将小于6的客户的Balance设置为0。
默认是在axis=0上进行分组的,通过设置也可以在其他任何轴上进行分组。...关键技术: groupby函数和agg函数的联用。 在我们用pandas对数据进行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...示例二 【例14】在apply函数中设置其他参数和关键字。...Pandas是一个强大的数据分析工具,而pivot()函数是Pandas中的一个重要函数,用于数据透视操作。它可以根据某些列的值将数据重塑为新的形式,使之更易于分析和理解。...关键技术:可以通过resample()函数对数据进行采样,并设置参数为’M’,表示以“月”为单位的采样。
之前介绍过索引操作,现在接着对Pandas中的分组操作进行介绍:主要包含SAC含义、groupby函数、聚合、过滤和变换、apply函数。...在详细讲解每个模块之前,首先读入数据: import numpy as np import pandas as pd df = pd.read_csv('data/table.csv',index_col...(如元素标准化); 过滤(Filtration):即按照某些规则筛选出一些组(如选出组内某一指标小于50的组); 综合问题:即前面提及的三种问题的混合。...既然索引已经能够选出某些符合条件的子集,那么filter函数的设计有什么意义? 答:filter函数是用来筛选组的,结果是组的全体。 问题5. 整合、变换、过滤三者在输入输出和功能上有何异同?...过滤(Filtration):即按照某些规则筛选出一些组:输入的是每组数据,输出的是满足要求的组的所有数据。 问题6. 在带参数的多函数聚合时,有办法能够绕过wrap技巧实现同样功能吗?
1 以放置列,0 设置为行。...df.dropna(axis=0, how='any', inplace=True) 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观测值(即行) france_churn = df[(df.Geography...df[['Geography','Gender','Exited']].groupby(['Geography','Gender']).mean() 13.Groupby与聚合函数结合 agg 函数允许在组上应用多个聚合函数...16.重置并删除原索引 在某些情况下,我们需要重置索引并同时删除原始索引。...df[['Geography','Exited','Balance']].sample(n=6).reset_index(drop=True) 17.将特定列设置为索引 我们可以将数据帧中的任何列设置为索引
图片Pandas的功能与函数极其丰富,要完全记住和掌握是不现实的(也没有必要),资深数据分析师和数据科学家最常使用的大概有二三十个函数。在本篇内容中,ShowMeAI 把这些功能函数总结为10类。...注意:它不保留某些数据类型(例如日期)。 很多情况下我们会将参数索引设置为False,这样就不用额外的列来显示数据文件中的索引。to_excel: 写入 Excel 文件。...sort_values:通过指定列名对数据进行排序,可以调整升序或者降序规则。图片 5.处理重复我们手上的数据集很可能存在重复记录,某些数据意外两次输入到数据源中,清洗数据时删除重复项很重要。...图片 10.分组统计我们经常会需要对数据集进行分组统计操作,常用的函数包括:groupby:创建一个 GroupBy 分组对象,可以基于一列或多列进行分组。...mean:您可以在 GroupBy 分组对象上调用 mean 来计算均值。其他的常用统计信息包括标准差std。size: 分组的频率agg:聚合函数。包括常用的统计方法,也可以自己定义。
3、使用绝对而不是相对路径 绝对路径的最大问题是无法进行方便部署,解决这个问题的主要方法是将工作目录设置为项目根目录,并且不要再项目中包含项目目录外的文件,并且在代码中的所有路径均使用相对路径。...DeprecationWarning 通常指出 Pandas 弃用了某些功能,并且您的代码在使用更高版本时会中断。...7、pandas代码不规范 方法链是 pandas 的一个很棒的特性,但是如果在一行中包含了很多的操作,代码可能会变得不可读。...如果我们自己来设计这种规则是费事费力的并且这种规则需要很多的实践,好在Python官方有已经指定好的规则:PEP,它是 Python 的官方样式指南。...虽然PEP的规则很多并且很繁琐,我们可以忽略了一些 PEP 规则,但可以在 90% 的代码中使用了它们。 9、你不使用编码辅助工具 您想在编码方面大幅提高生产力吗?
3、使用绝对而不是相对路径 绝对路径的最大问题是无法进行方便部署,解决这个问题的主要方法是将工作目录设置为项目根目录,并且不要再项目中包含项目目录外的文件,并且在代码中的所有路径均使用相对路径。...DeprecationWarning通常指出Pandas弃用了某些功能,并且您的代码在使用更高版本时会中断。...7、Pandas代码不规范 方法链是Pandas的一个很棒的特性,但是如果在一行中包含了很多的操作,代码可能会变得不可读。...如果我们自己来设计这种规则是费事费力的并且这种规则需要很多的实践,好在Python官方有已经指定好的规则:PEP,它是Python的官方样式指南。...虽然PEP的规则很多并且很繁琐,我们可以忽略了一些PEP规则,但可以在90% 的代码中使用了它们。 9、不适用编码辅助工具 您想在编码方面大幅提高生产力吗?
Pandas部分应掌握的重要知识点 import numpy as np import pandas as pd 一、DataFrame数据框的创建 1、直接基于二维数据创建(同时使用index和columns...注意:下面的3:5表示下标为3和4的两行,[0,2]表示下标为0和2的两列。...的行; ② loc索引器的切片却包含终值,所以team.loc[3:4,[0,2]]中却包含行标签为4的行; ③ 同样是整数,在iloc索引器中将被解读为行/列下标,而在loc索引器中将被解读为行/...下面把性别列的值都设置为"Unknown"。...填充的方向默认是axis=0,即垂直方向填充;如果希望水平方向填充,需要设置axis=1。
深入探索Pandas库:Excel数据处理的高级技巧 在数据分析领域,Pandas库因其强大的数据处理能力而广受欢迎。...True) 替换数据 替换DataFrame中的值也是一个常见的需求: # 替换数据 df.replace(old_value, new_value, inplace=True) 数据转换 数据类型转换 在某些情况下...,我们需要将列的数据类型转换为另一种类型: # 数据类型转换 df['age'] = df['age'].astype(int) 设置索引 将一列设置为DataFrame的索引,可以方便我们进行后续的数据处理...: # 设置索引 df.set_index('name', inplace=True) 数据聚合 聚合函数 对数据进行聚合操作,如求和、平均值等,是数据分析中的重要步骤: # 聚合函数 df.groupby...= df.groupby('age') 数据重塑 堆叠 将多层索引堆叠为单个索引,有助于简化数据结构: # 堆叠 df.stack() 解堆叠 将堆叠的索引解堆叠为多层索引,有助于恢复原始的数据结构:
过滤掉缺失值所在行 在过滤之前,首先要分析缺失比例的大小,其基础在于判断各个值是否为空,pandas提供了4个相关API,包括 isna(), isnull(),二者等价 notna(), notnull...特定规则填充。在某些不适合利用常数值填充的情况下时,基于特定场景可基于特定规则填充,例如得到疫情期间各地累计感染人数,当某地某天的感染人数最新数字缺失时,我们可以用其前一天的感染人数填充。...既然要过滤掉重复值,那么首先要判断哪些是重复值,pandas中提供接口为duplicated(),具体如下: ?...另外,在某些情况下不需要针对所有列进行重复值判断,而是仅在特定几列范围内展开去重,此时drop_duplicates还可选一个参数subset,接收列名序列。...实现方法也有很多,但借助groupby+transform可轻松实现这一清洗过程: ? 对groupby的各种操作不熟悉的,可参考历史文章Pandas中groupby的这些用法你都知道吗?
领取专属 10元无门槛券
手把手带您无忧上云