在numpy和pandas中经常出现axis轴这个概念,下面就详细的看看这个轴到底是什么意思 使用0值表示沿着每一列或行标签\索引值向下执行方法 使用1值表示沿着每一行或者列标签模向执行对应的方法...一般来说axis=0代表列,axis=1代表行 import numpy as np X = np.array([[1, 2], [4, 5], [7, 8]]) print(np.mean(X,...axis=0))#[ 4. 5.] print(np.mean(X, axis=1))#[ 1.5 4.5 7.5] 如果有标签axis=1就代表标签的模向,如下 import pandas as
例如,有一项研究测量水的温度,另一项研究测量水的盐度和温度,第一个研究有一个维度;温度,而盐度和温度的研究是二维的。维度只是每个观测的不同属性,或者一些数据中的行。...在正常情况下,NumPy不能很好地处理不同大小的数组。...Pandas中的广播 Pandas的操作也与Numpy类似,但是这里我们特别说明3个函数,Apply、Applymap和Aggregate,这三个函数经常用于按用户希望的方式转换变量或整个数据。...但是我们肯定不希望这样,所以需要构造lambda表达式来只在单元格中的值是一个映射键时替换这些值,在本例中是字符串' male '和' female ' df.applymap(lambda x: mapping...总结 在本文中,我们介绍了Numpy的广播机制和Pandas中的一些广播的函数,并使用泰坦尼克的数据集演示了pandas上常用的转换/广播操作。
数值型描述统计 算数平均值 样本中的每个值都是真值与误差的和。 算数平均值表示对真值的无偏估计。...np.ptp(a)) np.argmax() np.argmin() 和 pd.idxmax() pd.idxmin(): 返回一个数组中最大/最小元素的下标 # 在np中,使用argmax获取到最大值的下标...print(np.argmax(a), np.argmin(a)) # 在pandas中,使用idxmax获取到最大值的下标 print(series.idxmax(), series.idxmin...若样本数量为奇数,中位数为最中间的元素 若样本数量为偶数,中位数为最中间的两个元素的平均值 案例:分析中位数的算法,测试numpy提供位数API np.median() 中位数...import numpy as np closing_prices = np.loadtxt('../..
标签:Python与Excel协同,pandas 本文介绍如何使用Python pandas库实现Excel中的SUMIF函数和COUNTIF函数功能。 SUMIF可能是Excel中最常用的函数之一。...在df[]中,这个表达式df['Borough']=='MANHATTAN'返回一个完整的True值或False值列表(2440个条目),因此命名为“布尔索引”。...Pandas中的SUMIFS SUMIFS是另一个在Excel中经常使用的函数,允许在执行求和计算时使用多个条件。 这一次,将通过组合Borough和Location列来精确定位搜索。...使用groupby()方法 如果对所有的Borough和LocationType组合感兴趣,仍将使用groupby()方法,而不是循环遍历所有可能的组合。只需将列名列表传递给groupby函数。...(S),虽然这个函数在Excel中不存在 mode()——将提供MODEIF(S),虽然这个函数在Excel中不存在 小结 Python和pandas是多才多艺的。
♣ 题目部分 在Oracle中,和“消除”相关的查询转换有哪些?...♣ 答案部分 (一)排序消除 LHR@orclasm > SELECT COUNT(1) FROM ( SELECT T.EMPNO FROM SCOTT.EMP T ORDER BY T.EMPNO...from client 0 sorts (memory) 0 sorts (disk) 1 rows processed (二)去重消除.../from client 6 sorts (memory) 0 sorts (disk) 58 rows processed (三)表消除...DEPTNO" IS NOT NULL) (四)公共子表达式消除(Common Sub-expression Elimination,CSE) LHR@orclasm > SELECT * FROM
翻译|佳灵 校对|孙强 在招聘和相关日常商业行为中,企业正更多地转向大数据。这已经引发了关于偏见是否会被根除的讨论。大数据真的能消除偏见?...细化筛选过程 评估应聘者与人沟通好不好和判断他们的幸福水平,而不是只看他们的工作经历、学历和成绩记录。这样能够建立理想的人格特质列表来和合格的应聘者进行对照。...整合社交媒体 如今有无数的工具可以用来从社交媒体配置文件中收集信息,找到有才华的应聘者。求职者通常上网分享他们的个人信息和求职经历。...那是能找到潜在应聘者的地方,因为他们在那里分享他们的知识,特别是如果有和招聘公司有关的问题。 总结:大数据和人力资源是良好的合作关系。无论如何,它不应该消除所有的商业行为。...数字和算法不能说明一个人的全面情况。例如,面试过程能够通过不同的数据点和洞悉招聘趋势进行补充。 计算机已经在商业业务中发挥了很大的作用,无论是更有效的管理运作,还是通过闪存存放数据。
单例设计模式的概述及其在 Dart 和 Flutter 中的实现 推荐通过GITBOOK进行阅读设计模式 要查看所有设计模式的实际应用,请查看Flutter 设计模式应用程序。. 什么是单例?...适用性 在创建类的实例代价昂贵的情况下可以使用单例,例如,实例化一个类需要从外部来源加载大量数据。...当需要某种缓存层时,也可以使用单例——单例类可以在实例请求时检查和管理缓存。 一般思考和风险 在设计单例时,应考虑延迟构造 —— 类实例应仅在首次需要时创建; 通常,单例类不应该需要参数来构造。...因此,只要你不自己从代码中创建一个新的独立隔离区,就不必担心在Dart中实现单例时的线程安全。...如果你对这个话题不熟悉,我强烈推荐你观看这个video关于Dart和Flutter中的隔离区和事件循环的视频。 在某些情况下,单例设计模式被认为是一种反模式。
代码: import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 10, 1000) y=0 for k in range
3 处理原始文本 4 编写结构化程序 5 分类和标注词汇 6 学习分类文本 7 从文本提取信息 8 分析句子结构 9 构建基于特征的语法 10 分析句子的意思 11 语言学数据管理 后记:语言的挑战...NumPy 基础知识 零、前言 一、NumPy 简介 二、NumPy ndarray对象 三、使用 NumPy 数组 四、NumPy 核心和子模块 五、NumPy 中的线性代数 六、NumPy 中的傅立叶分析...Pandas 学习手册中文第二版 零、前言 一、Pandas 与数据分析 二、启动和运行 Pandas 三、用序列表示单变量数据 四、用数据帧表示表格和多元数据 五、数据帧的结构操作 六、索引数据...4.3 单变量梯度下降 五、常见编程工具 5.1 使用 bash 走向胜利 5.2 使用 git 版本控制工具 5.3 在 Amazon Web Services 上启动虚拟机 六、可选 6.1...10 测量公众人物的 Twitter 活动 11 何去何从 附录 1 编写程序通过 API 获取网站的信息 2 通过解析网页直接获取哔哩某播主的详细信息 3 在离线表格软件中打开和处理 csv
通常我们通过Python来处理数据,用的比较多的两个库就是numpy和pandas,在本篇文章中,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?...6、通过numpy库求取的结果如下图所示。 ? 通过该方法,也可以快速的取到文件夹下所有文件的第一列的最大值和最小值。.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨
, out=None, **kwargs) 下面这段示例代码使用了 Python 的 NumPy 库来实现一个简单的功能:将数组中的元素限制在指定的最小值和最大值之间。...具体来说,它首先创建了一个包含 0 到 9(包括 0 和 9)的整数数组,然后使用 np.clip 函数将这个数组中的每个元素限制在 1 到 8 之间。...此函数遍历输入数组中的每个元素,将小于 1 的元素替换为 1,将大于 8 的元素替换为 8,而位于 1 和 8 之间的元素保持不变。处理后的新数组被赋值给变量 b。...注意事项 输入数据类型:虽然 np.clip 可以处理多种类型的输入数据(如列表、元组等),但结果总是返回一个 NumPy 数组。...性能考虑:对于非常大的数组,尤其是在性能敏感场景下使用时,应当注意到任何操作都可能引入显著延迟。因此,在可能情况下预先优化数据结构和算法逻辑。
a末尾 a.count(1) 统计列表a中元素1出现的次数 a.extend([1, 2]) 将列表[1, 2]的内容追加到列表a的末尾中 a.index(1) 从列表a中找出第一个1的索引位置 a.insert...a = t | s # t和s的并集 b = t & s #t和s的交集 c = t - s #求差集(项在t中,但不在s中) d = t^s #对称差集(项在t或s中,但不会同时出现在二者中) (4)...比如,在2.x 中,print是作为一个语句出现的,用法为print a :但是在3.x中,它是作为函数出现的,用 法为print(a)。...一般而言是先安装MinGW(windows下的GCC和G++)然后在安装Theano(提前安装好numpy等依赖库),最后安装keras。如果要实现GPU加速,还需要安装和配置CUDA。...) # 分好词的句子,每个句子以词列表的形式输入 sentences=[['first','sentence'],['second','sentence']] # 用以上句子训练词向量模型 model
简单的LSTM问题,能够预测一句话的下一个字词是什么 固定长度的句子,一个句子有3个词。...,一个epoch中,执行多少个batch #batch_size是一个batch中,有多少个样本。...#所以,batch_size*steps_per_epoch就等于一个epoch中,训练的样本数量。(这个说法不对!...再观察看看吧) #可以将epochs设置成1,或者2,然后在genarate_data中打印样本序号,观察到样本总数。...)) 可以看到,预测结果为 e 补充知识:训练集产生的onehot编码特征如何在测试集、预测集复现 数据处理中有时要用到onehot编码,如果使用pandas自带的get_dummies方法,
不过在基于词典分词的过程中,词性和词频没有太大的用处,可以暂时忽略。..." 逆向最长匹配:"研究 / 生命 / 起源" 通过上面的例子可以看出,有时候正向最长匹配正确,而有的时候逆向匹配的更好,当然也有可能正向最长匹配和逆向最长匹配都无法消除歧义的情况。...清华大学孙松茂教授做过统计,在随机挑选的3680个句子中,正向匹配错误而逆向匹配正确的句子占比9.24%,正向匹配正确而逆向匹配错误的情况则没有被统计到。...择优规则: 最长的单词所表达的意义越丰富并且含义越明确。如果正向最长匹配和逆向最长匹配分词后的词数不同,返回词数更少结果; 非词典词和单字词越少越好,在语言学中单字词的数量要远远小于非单字词。...:分词后的list列表 :return: 单字词的个数 """ return sum(1 for word in word_list if len(word) == 1) def
正因为pandas是在numpy基础上实现,其核心数据结构与numpy的ndarray十分相似,但pandas与numpy的关系不是替代,而是互为补充。...自然毫无悬念 dataframe:无法访问单个元素,只能返回一列、多列或多行:单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....是在numpy的基础上实现的,所以numpy的常用数值计算操作在pandas中也适用: 通函数ufunc,即可以像操作标量一样对series或dataframe中的所有元素执行同一操作,这与numpy...尤为强大的是,除了常用的字符串操作方法,str属性接口中还集成了正则表达式的大部分功能,这使得pandas在处理字符串列时,兼具高效和强力。例如如下代码可用于统计每个句子中单词的个数 ?...pandas中的另一大类功能是数据分析,通过丰富的接口,可实现大量的统计需求,包括Excel和SQL中的大部分分析过程,在pandas中均可以实现。
词频统计 TF-IDF和词频是脱不了关系的,所以在这里再记录一下关于词频的内容。 其实在词云图那块儿就已经完成了词频统计,这里记录另一种方法,即利用NLTK包实现统计与可视化。...完整代码(不能直接使用,需要jieba分词中清洗后分词并停用词中的方法) # -*- coding: utf-8 -*- # @Time : 2022/5/1 17:07 # @Author : MinChess...该技术采用一种统计方法,根据字词的在文本中出现的次数和在整个语料中出现的文档频率来计算一个字词在整个语料中的重要程度。它的优点是能过滤掉一些常见的却无关紧要本的词语,同时保留影响整个文本的重要字词。...文本频率是指某个关键词在整个语料所有文章中出现的次数。倒文档频率又称为逆文档频率,它是文档频率的倒数,主要用于降低所有文档中一些常见却对文档影响不大的词语的作用。...# @Software: PyCharm import os import time import pandas as pd import numpy as np import jieba import
代码 在本节中,我们将重点介绍用于训练此句子分类模型的代码。包含所有这些代码的ipython notebook可以在colab和github上找到。...导入需要使用的工具包 import numpy as np import pandas as pd import torch import transformers as ppb # pytorch transformers...上述指令将每个句子转化为一个id列表。 ? 数据集是列表的列表(或pandas的Series/DataFrame)。...在我们的例子中是2000(因为我们自行限制为2000个示例),66(这是2000个示例中最长序列中的词数量),768(DistilBERT模型中的隐藏单位数量)。 ?...可以对DistilBERT进行训练以提高其在此任务上的分数,这个过程称为微调,会更新BERT的权重,以提高其在句子分类(我们称为下游任务)中的性能。
pandas 是一个快速、强大、灵活且易于使用的开源数据分析和处理工具,它是建立在 Python 编程语言之上的。...pandas 官方文档地址:https://pandas.pydata.org/ 在 Python 中,使用 pandas 库通过列表字典(即列表里的每个元素是一个字典)创建 DataFrame 时,如果每个字典的...这是一个很好的问题,因为它涉及到 pandas 在处理非规范化输入数据时的灵活性和稳健性。...下面举一个简单示例: # 导入 pandas 库 import pandas as pd import numpy as np # 创建包含不同 key 顺序和个别字典缺少某些键的列表字典 data...总而言之,pandas 在处理通过列表字典创建 DataFrame 时各个字典键顺序不同以及部分字典缺失某些键时显示出了极高的灵活性和容错能力。
AI项目体验地址 https://loveai.tech Feature 文本向量表示 字词粒度,通过腾讯AI Lab开源的大规模高质量中文词向量数据(800万中文词),获取字词的word2vec向量表示...文本相似度计算 基准方法,估计两句子间语义相似度最简单的方法就是求句子中所有单词词嵌入的平均值,然后计算两句子词嵌入之间的余弦相似性。...词移距离(Word Mover’s Distance),词移距离使用两文本间的词嵌入,测量其中一文本中的单词在语义空间中移动到另一文本单词所需要的最短距离。...query和docs的相似度比较 rank_bm25方法,使用bm25的变种算法,对query和文档之间的相似度打分,得到docs的rank排序。...词移距离 基于我们的结果,好像没有什么使用词移距离的必要了,因为上述方法表现得已经很好了。只有在STS-TEST数据集上,而且只有在有停止词列表的情况下,词移距离才能和简单基准方法一较高下。 ?
数据集: SST2 在本例中,我们将使用的数据集是SST2,其中包含电影评论中的句子,每个句子都标记为正样本(值为 1)或负样本(值为 0): ?...代码 在本节中,我们将重点介绍训练这个句子分类模型的代码。 让我们从 importing 工具开始。...import numpy as np import pandas as pd import torch import transformers as ppb # pytorch transformers...数据集当前是列表(或 panda 的 Series/DataFrame)的列表。...hidden unit outputs features = last_hidden_states[0][:,0,:].numpy() 现在features是一个 2d numpy 数组,其中包含数据集中所有句子的嵌入
领取专属 10元无门槛券
手把手带您无忧上云