导读:Pandas是Python数据分析的利器,也是各种数据建模的标准工具。本文带大家入门Pandas,将介绍Python语言、Python数据生态和Pandas的一些基本功能。
本文介绍如何使用Python pandas库实现Excel中的SUMIF函数和COUNTIF函数功能。
最近经常看到各平台里都有Python的广告,都是对excel的操作,这里明哥收集整理了一下pandas对excel的操作方法和使用过程。本篇介绍 pandas 的 DataFrame 对列 (Column) 的处理方法。示例数据请通过明哥的gitee进行下载。
选择单列。可以直接用列名选择,也可以通过ix、iloc、loc方法进行选择行、列。
列表推导是一种用于处理列表的简单单行语法,可让您访问列表的各个元素并对其执行操作。
Polars[2]是Pandas最近的转世(用Rust编写,因此速度更快,它不再使用NumPy的引擎,但语法却非常相似,所以学习 Pandas 后对学习 Polars 帮助非常大。
Pandas是一个Python数据分析库,它为数据操作提供了高效且易于使用的工具,可以用于处理来自不同来源的结构化数据。Pandas提供了DataFrame和Series两种数据结构,使得数据操作和分析更加方便和灵活。本文将介绍Pandas的一些高级知识点,包括条件选择、聚合和分组、重塑和透视以及时间序列数据处理等方面。
数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大的数据集。使用基于 Python 构建的开源机器学习库。你可以轻松导入和导出不同格式的数据。
Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。经过多年不懈的努力,Pandas 离这个目标已经越来越近了。
本文是【统计师的Python日记】第10天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型。 第2天学习了python的函数、循环和条件、类。 第3天了解了Numpy这个工具库。 第4、5两天掌握了Pandas这个库的基本用法。 第6天学习了数据的合并堆叠。 第7天开始学习数据清洗,着手学会了重复值删除、异常值处理、替换、创建哑变量等技能。 第8天接着学习数据清洗,一些常见的数据处理技巧,如分列、去除空白等被我一一攻破 第9天学习了正则表达式处理文本数据 原文复习(点击
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes
会写python不难,写好却需要下一番功夫,上篇文章写了for循环的简单优化方法,原本想一鼓作气,梳理一下for循环优化的高级方法,但是梳理过程中发现for循环优化需要比较多的python基础知识,如果了解不透彻很难达到优化的效果,因此,笔者想用几个短篇先介绍一下python的常用包和方法,方便后续优化使用。
上一篇文章一场pandas与SQL的巅峰大战中,我们对比了pandas与SQL常见的一些操作,我们的例子虽然是以MySQL为基础的,但换作其他的数据库软件,也一样适用。工作中除了MySQL,也经常会使用Hive SQL,相比之下,后者有更为强大和丰富的函数。本文将延续上一篇文章的风格和思路,继续对比Pandas与SQL,一方面是对上文的补充,另一方面也继续深入学习一下两种工具。方便起见,本文采用hive环境运行SQL,使用jupyter lab运行pandas。关于hive的安装和配置,我在之前的文章MacOS 下hive的安装与配置提到过,不过仅限于mac版本,供参考,如果你觉得比较困难,可以考虑使用postgreSQL,它比MySQL支持更多的函数(不过代码可能需要进行一定的改动)。而jupyter lab和jupyter notebook功能相同,界面相似,完全可以用notebook代替,我在Jupyter notebook使用技巧大全一文的最后有提到过二者的差别,感兴趣可以点击蓝字阅读。希望本文可以帮助各位读者在工作中进行pandas和Hive SQL的快速转换。本文涉及的部分hive 函数我在之前也有总结过,可以参考常用Hive函数的学习和总结。
作者:ROGER HUANG 本文翻译自:http://code-love.com/2017/04/30/excel-sql-python/ 来源:https://www.jianshu.com/p/51bb7726231b 本教程的代码和数据可在 Github 资源库 中找到。有关如何使用 Github 的更多信息,请参阅本指南。 数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大
Pandas作为大数据分析最流行的框架之一。用好Pandas就像大数据工程师用好SQL用好Excel一样重要。如果你打算学习 Python 中的数据分析、机器学习或数据科学工具,大概率绕不开Pandas库。Pandas 是一个用于 Python 数据操作和分析的开源库。
1、Pandas是python的一个数据分析包,为解决数据分析任务而创建的; 2、Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具; 3、pandas提供了大量能使我们快速便捷地处理数据的函数和方法;它是使Python成为强大而高效的数据分析环境的重要因素之一;
Excel与Python都是数据分析中常用的工具,本文将使用动态图(Excel)+代码(Python)的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作!
Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。
Pandas的使用很灵活,最重要的两个数据类型是DataFrame和Series。
pandas提供了很多方便简洁的方法,用于对单列、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁。
笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。
C3=SUMPRODUCT((明细表!$B$2:$B$31=统计!B3)*(明细表!$E$2:$E$31=12)*1)
Pandas是一个开源的Python库,提供了高性能、易用和灵活的数据结构,用于数据处理和分析。它建立在NumPy之上,使得处理结构化数据更加简单和高效。Pandas的两个主要数据结构是Series和DataFrame,可以理解为NumPy数组的增强版。它们提供了更多的功能和灵活性,使得数据处理变得更加直观和方便。
这是一个简短而精炼的示例和链接存储库,包含有用的 pandas 示例。我们鼓励用户为此文档添加内容。
在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。数据的缺失有很多原因,缺失不是错误、无效,需要对缺失的数据进行必要的技术处理,以便后续的计算、统计。
前2篇分别系统性介绍了numpy和matplotlib的入门基本知识,今天本文自然是要对pandas进行入门详细介绍,通过本文你将系统性了解pandas为何会有数据分析界"瑞士军刀"的盛誉。
在本系列的上一节已经介绍了如何读写 excel 数据,并快速进行汇总处理。但有些小伙伴看完之后有些疑惑:
原文的数据集是 bit.ly 短网址的,我这里在读取时出问题,不稳定,就帮大家下载下来,统一放到了 data 目录里。
第01章 Pandas基础 第02章 DataFrame运算 第03章 数据分析入门 第04章 选取数据子集 第05章 布尔索引 第06章 索引对齐 第07章 分组聚合、过滤、转换 第08章 数据清理 第09章 合并Pandas对象 第10章 时间序列分析 第11章 用Matplotlib、Pandas、Seaborn进行可视化
昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,功能也几乎恰是这样,所以如果具有良好的SQL基本功和熟练的pandas运用技巧,学习PySpark SQL会感到非常熟悉和舒适。
大家好,我是大鹏,城市数据团联合发起人,致力于Python数据分析、数据可视化的应用与教学。
凭借其广泛的功能,Pandas 对于数据清理、预处理、整理和探索性数据分析等活动具有很大的价值。
A3:用ORDERDATE的年份和月份分组,并将该列命名为y,m,同时计算该组的销售量
尽管Excel在职场和学术界非常流行,但对于一些高级的统计分析、数据可视化、大规模数据处理等任务,可能需要更专业的软件或编程语言,如R、Python、SAS或Stata。此外,对于特定的行业或研究领域,可能会有其他更适合的工具和平台。
Pandas 是 Python 中最广泛使用的数据分析和操作库。它提供了许多功能和方法,可以加快 「数据分析」 和 「预处理」 步骤。
Kevin Markham,数据科学讲师,2002 年,毕业于范德堡大学,计算机工程学士,2014 年,创建了 Data School,在线教授 Python 数据科学课程,他的课程主要包括 Pandas、Scikit-learn、Kaggle 竞赛数据科学、机器学习、自然语言处理等内容,迄今为止,浏览量在油管上已经超过 500 万次。
链接:https://towardsdatascience.com/30-examples-to-master-pandas-f8a2da751fa4
这篇推文还是python-matplotlib 散点图的绘制过程,涉及到的内容主要包括matplotlib ax.scatter()、hlines()、vlines()、text()、添加小图片和定制化散点图图例样式等。前期的数据处理部分还是pandas、numpy库的灵活 应用(这里主要涉及可视化的设置,数据处理、分析部分后期会专门开设专辑进行教程讲解。当然大家有不理解地方可以后台和我交流)
今天我们继续推出一篇数据处理常用的操作技能汇总:灵活使用pandas.groupby()函数,实现数据的高效率处理,主要内容如下:
玩转Pandas系列已经连续推送5篇,尽量贴近Pandas的本质原理,结合工作实践,按照使用Pandas的逻辑步骤,系统地并结合实例推送Pandas的主要常用功能,已经推送的5篇文章:
本文从一个案例入手,综合运用pandas的各类操作实现对数据的处理,处理步骤如下所示。在公众号后台回复“case”即可获取本文全部数据,代码和文档。
和很多同学接触过程中,我发现自学Python数据分析的一个难点是资料繁多,过于复杂。大部分网上的资料总是从Python语法教起,夹杂着大量Python开发的知识点,花了很多时间却始终云里雾里,不知道哪些知识才是真正有用的。本来以为上手就能写爬虫出图,却在看基础的过程中消耗了一周又一周,以至于很多励志学习Python的小伙伴牺牲在了入门的前一步。
今天给大家准备了25个pandas高频实用技巧,让你数据处理速度直接起飞。文章较长,建议收藏!
pandas学到分组迭代,那么基础的pandas系列就学的差不多了,自我感觉不错,知识追寻者用pandas处理过一些数据,蛮好用的;
数据经过采集后通常会被存储到Word、Excel、JSON等文件或数据库中,从而为后期的预处理工作做好数据储备。数据获取是数据预处理的第一步操作,主要是从不同的渠道中读取数据。Pandas支持CSV、TXT、Excel、JSON这几种格式文件、HTML表格的读取操作,另外Python可借助第三方库实现Word与PDF文件的读取操作。本章主要为大家介绍如何从多个渠道中获取数据,为预处理做好数据准备。
3月2日,应主办方 TechMill 的邀请,我参加了在达拉斯公共图书馆举行的“达拉斯-沃斯堡开放数据日”(DFW Open Data Day)。
领取专属 10元无门槛券
手把手带您无忧上云