在人工智能算法大数据时代,会有各种各样的预测模型,那怎么来评判一个预测模型的准确度呢?这一篇就来聊聊常用的一些评价指标。
PLS,即偏最小二乘(Partial Least Squares),是一种广泛使用的回归技术,用于帮助客户分析近红外光谱数据。如果您对近红外光谱学有所了解,您肯定知道近红外光谱是一种次级方法,需要将近红外数据校准到所要测量的参数的主要参考数据上。这个校准只需在第一次进行。一旦校准完成且稳健,就可以继续使用近红外数据预测感兴趣参数的值。
2、我把销售额的实际值和几种预测方法的值保存在excel表格:预测结果2023.6.2.xlsx中,表头如下:
假如你想深入机器学习和它背后的数学,你将会很快意识到一切都可归结为一个优化问题。就连训练神经网络都是一个参数优化的问题。因此要想理解机器学习算法,你需要首先理解数学优化的基本概念,以及它为什么这么有用。
在很多信号处理系统中,并没有信号的先验统计特性,不能使用某一固定参数的滤波器来处理,比如信道均衡、回声消除以及其他因素之间的系统模型等,均采用了调整系数的滤波器,称为自适应滤波器。这样的滤波器结合了允许滤波器系数适应于信号统计特性的算法。
机器学习有许多不同的算法,每个算法都有其特定的应用场景和优缺点。然而,最简单的机器学习算法可能是线性回归。
由于是刚刚毕业一年,所以都是比较基础的问题,就是有一个问题,掰扯了比较长的时间:如何评估线性回归模型的性能和准确度?
损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)计算损失函数。将所有损失函数(loss function)的值取平均值的函数称为代价函数(cost function),更简单的理解就是损失函数是针对单个样本的,而代价函数是针对所有样本的。
来源:DeepHub IMBA本文约2800字,建议阅读5分钟本文为你整理10个常见的损失函数。 什么是损失函数? 损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)计算损失函数。将所有损失函数(loss function)的值取平均值的函数称为代价函数(cost function),更简单的理解就是损失函数是针对单个样本的,而代价函数是针对所有样本的。 损失函数与度量指
R², RMSE, MAE 如果你像我一样,你可能会在你的回归问题中使用R平方(R平方)、均方根误差(RMSE)和均方根误差(MAE)评估指标,而不用考虑太多。? 尽管它们都是通用的度量标准,但在什
疫情期间,在家学习Python,调通了基于监督学习的LSTM神经网络预测模型代码,在一般代码的基础上,做了单步和多步通用版的改进。调通的代码附后,供各位大咖指正。
MSE(均方误差)对于每一个输出的结果都非常看重,而交叉熵只对正确分类的结果看重。
线性回归是一种简单但功能强大的预测建模技术。它的核心思想是通过拟合一条直线(在二维空间中)或一个超平面(在多维空间中)来最小化预测值与实际值之间的误差。以下是线性回归算法原理的详细解释:
机器学习为计算模型提供了基于数据进行预测、分类和决策的能力。作为一个研究领域,机器学习是人工智能领域的一个子集,它封装了构建具有模仿人类智能甚至在某些情况下超越人类智能的能力的计算模型所涉及的过程。
构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。 选择正确的验证指标就像选择一副水晶球:它使我们能够以清晰的视野看到模型的性能。 在本指南中,我们将探讨分类和回归的基本指标和有效评估模型的知识。 学习何时使用每个指标、优点和缺点以及如何在 Python 中实现它们。
使用神经网络解决时间序列预测问题的好处是网络可以在获得新数据时对权重进行更新。 在本教程中,你将学习如何使用新数据更新长短期记忆(LTCM)递归神经网络。 在学完本教程后,你将懂得: 如何用新数据更
机器学习模型的表现不佳通常是由于过度拟合或欠拟合引起的,我们将重点关注客户经常遇到的过拟合情况。过度拟合是指学习的假设在训练数据上拟合得非常好,以至于对未见数据的模型性能造成负面影响。该模型对于训练数据中没有的新实例的泛化能力较差。
一般常用到的指数平滑法为一次指数平滑、二次指数平滑和三次指数平滑,高次指数平滑一般比较难见到,因此本文着重介绍了一次、二次和三次指数平滑的特点与不同。
自编码器是神经网络的一种,是一种无监督学习方法,使用了反向传播算法,目标是使输出=输入。 自编码器内部有隐藏层 ,可以产生编码表示输入。1986 年Rumelhart 提出。
最近学习吴恩达《Machine Learning》课程以及《深度学习入门:基于Python的理论与实现》书,一些东西总结了下。现就后者学习进行笔记总结。本文是本书的学习笔记(四)神经网络的学习的上半部分。
为了对几个行业的服务消费者协会在四个行业分别抽取了不同的企业作为样本。最近一年中消费者对总共23家企业投诉的次数如下表
从给定的房屋基本信息以及房屋销售信息等,建立一个回归模型预测房屋的销售价格。 数据下载请点击:下载,密码:mfqy。
股票市场周期是股票市场长期的价格模式,通常与商业周期有关。 它是技术分析的关键,其中投资方法基于周期或重复的价格模式。 如果我们对股市周期有了更好的理解,我们总能以相对低的价格买入并在每个周期以相对较高的价格卖出,将始终获得正的回报。当然,股票市场没有什么策略可以永远赚钱,但我们基于Python,可以帮助我们更深入、快速地了解隐藏在股市中的周期。
Keras中的长短期记忆(LSTM)网络支持时间步长。 这就引出这样一个问题:单变量时间序列的滞后观察是否可以用作LSTM的时间步长,这样做是否能改进预测性能。 在本教程中,我们将研究Python
NA_Sales,EU_Sales,JP_Sales作为数据集,每条数据的Global_Sales作为target建立回归模型
一、百度百科上方差是这样定义的: (variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 看这么一段文字可能有些绕,那就先从公式入手, 对于一组随机变量或者统计数据,其期望值我们由E(X)表示,即随机变量或统计数据的均值,
本系列是《玩转机器学习教程》一个整理的视频笔记。通过之前的小节了解了多项式回归的基本思路,有了多项式就可以很轻松的对非线性数据进行拟合,进而求解非线性回归的问题,但是如果不合理的使用多项式,会引发机器学习领域非常重要的问题过拟合以及欠拟合。
向AI转型的程序员都关注了这个号👇👇👇 1、手写交叉熵公式 2、为什么用交叉熵不用均方误差 1、均方误差作为损失函数,这时所构造出来的损失函数是非凸的,不容易求解,容易得到其局部最优解;而交叉熵的损失函数是凸函数; 2、均方误差作为损失函数,求导后,梯度与sigmoid的导数有关,会导致训练慢;而交叉熵的损失函数求导后,梯度就是一个差值,误差大的话更新的就快,误差小的话就更新的慢点。 3、说一下Adam优化的优化方式 Adam算法即自适应时刻估计方法(Adaptive
书中其中一个应用例子就是用于预测波士顿的房价,这是一个有趣的问题,因为房屋的价值变化非常大。这是一个机器学习的问题,可能最适用于经典方法,如 XGBoost,因为数据集是结构化的而不是感知的。然而,这也是一个数据集,深度学习提供了一个非常有用的功能,就是编写一个新的损失函数,有可能提高预测模型的性能。这篇文章的目的是来展示深度学习如何通过使用自定义损失函数来改善浅层学习问题。
有偏估计,允许估计有不大的偏度,以换取估计的误差显著减小,并在其残差平方和为最小的原则下估计回归系数。
我们使用损失函数来计算一个给定的算法与它所训练的数据的匹配程度。损失计算是基于预测值和实际值之间的差异来做的。如果预测值与实际值相差甚远,损失函数将得到一个非常大的数值。
在上一篇“数据挖掘: R, Python,Machine Learning,一起学起来!”中,我们介绍了用R进行线性回归的例子。 这次我们来看看,同样一份简单的无噪声数据,用线性模型和支持向量模型分别进行回归,得出的结果是否一致。 数据我们仍然用上次的y = x + 2的那份lrdata_1.csv。要用SVR模型,我们需要安装一个新的package —— e1071。 打开R后操作如下: > install.packages("e1071", dep = TRUE) > library(e1071) >
时间序列为预测未来数据提供了方法。根据先前的值,时间序列可用于预测经济,天气的趋势。时间序列数据的特定属性意味着通常需要专门的统计方法 ( 点击文末“阅读原文”获取完整代码数据 ) 。
本文为你讲解模型偏差、方差和偏差-方差权衡的定义及联系,并教你用Python来计算。
模板匹配任务需要将模板在图像中搜索,以确定模板所在位置的一种技术,Python OpenCV 中封装的函数为 cv2.matchTemplate
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 近几天推送了以决策树为基础模型的,性能优秀,应用广泛的 XGBoost 集成算法。与之相似的,比 XGBoost 发明还早的 GBDT(梯度提升决策树),它们的共同点都是以决策树为基础模型,要想深刻的理解这两种重要的集成算法,如果能更好地理解决策树算法的实现,会有助于理解它们。 下面,我们用源码实现决策树的回归算法,提到决策树一般
本文是对ESL中第七章一个小案例的复现,主要是对机器学习算法误差的分解,全文包括理论推导和模拟两部分。
时间序列为预测未来数据提供了方法。根据先前的值,时间序列可用于预测经济,天气的趋势。时间序列数据的特定属性意味着通常需要专门的统计方法。
运动估计是视频去噪技术的重要组成之一,计算相邻两帧视频序列各像素的相对运动偏移量,从而得到其运动轨迹。
本文由博主经过查阅网上资料整理总结后编写,如存在错误或不恰当之处请留言以便更正,内容仅供大家参考学习。
机器学习中的预测问题通常分为2类:回归与分类。 简单的说回归就是预测数值,而分类是给数据打上标签归类。 本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。 本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。 拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。 代码如下: [python] view plaincopy import matplotlib.py
保持更新,资源摘抄自网络;更多内容请关注 cnblogs.com/xuyaowen;
机器学习中的预测问题通常分为2类:回归与分类。 简单的说回归就是预测数值,而分类是给数据打上标签归类。 本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。 本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。 拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。 代码如下: [python] view plaincopy import matplotlib.p
沃尔玛是美国领先的零售商之一,他们希望能够准确预测销售和需求,因为一些事件和节假日可能会影响每天的销售额。目前,他们有 45 家商店的销售数据,但由于机器学习算法的不适用,他们面临着不可预见的需求和库存短缺的挑战。理想情况下,一种合适的机器学习算法应该能够准确预测需求,并考虑到包括 CPI、失业指数等在内的经济状况因素。
对比交叉熵损失与均方误差损失,只看单个样本的损失即可,下面从两个角度进行分析。
猛着看一下这个公式是不是觉得眼熟,这不就是线性回归的损失函数嘛!!! 对,在线性回归的时候我们的目的就是让这个损失函数最小。那么模型做出来了,我们把损失函数丢到测试集上去看看损失值不就好了嘛。简单直观暴力!
LSTM(或长短期记忆人工神经网络)允许分析具有长期依赖性的有序数据。当涉及到这项任务时,传统的神经网络体现出不足,在这方面,LSTM将用于预测这种情况下的电力消耗模式。
领取专属 10元无门槛券
手把手带您无忧上云