首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

B+树索引使用(7)匹配列前缀,匹配值范围(十九)

B+树索引使用(6)最左原则 --mysql从入门到精通(十八) 匹配列前缀 innoDB给其他列添加二级索引,会按列给他排序,不管是页之间的双向链表排序,还是页内数据槽点的单向列表排序,都是按列值排的...匹配值范围 我们看idx_name_birthday_phone索引b+示意图,所有记录都是按索引从小到大进行排序的,比如我们用where name > ‘Anny’ and name 值,在进行birhday进行birthday>’1990-01-01’过滤。...:1)name肯定使用b+树的二级索引先查询到叶子节点的列值加主键,再聚簇索引回表操作返回聚簇索引叶子节点的全部数据。...2)因为name相同的情况下,birthday会触发索引查询,先在b+树叶子节点找到>’1990-01-01’的列值和主键,在通过主键回表查询全部数据3)因为phone使用索引查询的前提是birthday

99520
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas 是基于 numpy 构建的一个提供高性能、易用数据结构和数据分析工具的库。在本段代码中,numpy 用于生成随机数数组和执行数组操作,pandas 用于创建和操作 DataFrame。...首先定义了一个字典 data,其中键为 “label”,值为一个列表 [1, 2, 3, 4]。然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。...values 属性返回 DataFrame 指定列的 NumPy 表示形式。...结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    基于奇异值分解(SVD)的图片压缩实践

    本文通过对图片进行SVD压缩,对不同的参数下的压缩效果进行对比。 SVD概念可以参考:《统计学习方法》–奇异值分解(Singular Value Decomposition,SVD) 2....是 m×nm \times nm×n 的对角矩阵 σi\sigma_iσi​ 称为矩阵 AAA 的奇异值 UUU 的列向量,左奇异向量 VVV 的列向量,右奇异向量 ?...%.4f,奇异值数量:%d" % (zip_rate, sigma_i)) print("设置的压缩率:", rate) print("使用的奇异值数量:", sigma_i)...font.sans-serif'] = 'SimHei' # 消除中文乱码 img = plt.imread(imgfile) f1 = plt.subplot(331) # 绘制子图,3行3列,...可以看出在使用128个奇异值的SVD压缩情况下,就可以得到跟原图差不多效果的图片 原图是703x800的尺寸,SVD使用的矩阵 ((703, 128)+(128, 128)+(128, 800))=208768

    2.3K41

    【Python】基于某些列删除数据框中的重复值

    具体语法如下: DataFrame.drop_duplicates(subset=None,keep='first',inplace=False) 代码解析: DataFrame:待去重的数据框。...subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...导入设置路径的库 import pandas as pd #导入数据处理的库 import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值...想要根据更多列数去重,可以在subset中添加列。如果不写subset参数,默认值为None,即DataFrame中一行元素全部相同时才去除。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    20.5K31

    【Python】基于多列组合删除数据框中的重复值

    二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...如需数据实现本文代码,请到公众号中回复:“基于多列删重”,可免费获取。 得到结果: ?...三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。...导入设置路径的库 import pandas as pd #导入数据处理的库 import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值

    14.7K30

    【数据处理包Pandas】DataFrame对象的合并

    它们的主要区别: concat支持多个 DataFrame 对象的水平和垂直排放,即可以列合并也可以行合并;但与merge不同,它的合并不基于列值匹配。...merge的合并是列合并,合并时会基于列值匹配,类似于 SQL 语言的多表连接查询;merge只能对两个 DataFrame 对象同时合并。...join也是列合并,但它的合并不是基于列值匹配而是基于行索引/列索引的匹配,特定情况下与concat做列合并的效果相当。...,类似于SQL中的连接操作,而concat并没有基于列值匹配进行合并。...一对一连接:在起连接作用的关键列(employee)上,通过列值匹配进行合并。 pd.merge(df3, df4) concat并没有基于两个employee列的相同值匹配进行合并。

    9500

    原 荐 SparkSQL简介及入门

    此外,基于列存储,每列数据都是同质的,所以可以数据类型转换的CPU消耗。此外,可以采用高效的压缩算法来压缩,是的数据更少。...2)很多列式数据库还支持列族(column group,Bigtable系统中称为locality group),即将多个经常一起访问的数据列的各个值存放在一起。...如果读取的数据列属于相同的列族,列式数据库可以从相同的地方一次性读取多个数据列的值,避免了多个数据列的合并。列族是一种行列混合存储模式,这种模式能够同时满足OLTP和OLAP的查询需求。     ...比如,性别列只有两个值,“男”和“女”,可以对这一列建立位图索引:     如下图所示     “男”对应的位图为100101,表示第1、4、6行值为“男”     “女”对应的位图为011010,表示第...比如有增量压缩、前缀压缩算法都是基于列存储的类型定制的,所以可以大幅度提高压缩比,有利于存储和网络输出数据带宽的消耗。

    2.5K60

    SparkSQL极简入门

    此外,基于列存储,每列数据都是同质的,所以可以数据类型转换的CPU消耗。此外,可以采用高效的压缩算法来压缩,是的数据更少。...2)很多列式数据库还支持列族(column group,Bigtable系统中称为locality group),即将多个经常一起访问的数据列的各个值存放在一起。...如果读取的数据列属于相同的列族,列式数据库可以从相同的地方一次性读取多个数据列的值,避免了多个数据列的合并。列族是一种行列混合存储模式,这种模式能够同时满足OLTP和OLAP的查询需求。...比如,性别列只有两个值,“男”和“女”,可以对这一列建立位图索引: 如下图所示 “男”对应的位图为100101,表示第1、4、6行值为“男” “女”对应的位图为011010,表示第2、3、5行值为...比如有增量压缩、前缀压缩算法都是基于列存储的类型定制的,所以可以大幅度提高压缩比,有利于存储和网络输出数据带宽的消耗。

    3.9K10

    基于Spark的机器学习实践 (二) - 初识MLlib

    公告:基于DataFrame的API是主要的API 基于MLlib RDD的API现在处于维护模式。 从Spark 2.0开始,spark.mllib包中基于RDD的API已进入维护模式。...在达到功能奇偶校验(粗略估计Spark 2.3)之后,将弃用基于RDD的API。 预计基于RDD的API将在Spark 3.0中删除。 为什么MLlib会切换到基于DataFrame的API?...不,MLlib包括基于RDD的API和基于DataFrame的API。基于RDD的API现在处于维护模式。...MLlib支持密集矩阵,其入口值以列主序列存储在单个双阵列中,稀疏矩阵的非零入口值以列主要顺序存储在压缩稀疏列(CSC)格式中 与向量相似,本地矩阵类型为Matrix , 分为稠密与稀疏两种类型。...类似于一个简单的2维表 2.5.3 DataFrame DataFrame结构与Dataset 是类似的,都引|入了列的概念 与Dataset不同的是,DataFrame中的毎一-行被再次封装刃

    2.8K20

    基于Spark的机器学习实践 (二) - 初识MLlib

    公告:基于DataFrame的API是主要的API 基于MLlib RDD的API现在处于维护模式。 从Spark 2.0开始,spark.mllib包中基于RDD的API已进入维护模式。...不,MLlib包括基于RDD的API和基于DataFrame的API。基于RDD的API现在处于维护模式。...DataFrame函数用于矢量列的描述性摘要统计(SPARK-19634)。 Huber损失的稳健线性回归(SPARK-3181)。...MLlib支持密集矩阵,其入口值以列主序列存储在单个双阵列中,稀疏矩阵的非零入口值以列主要顺序存储在压缩稀疏列(CSC)格式中 与向量相似,本地矩阵类型为Matrix , 分为稠密与稀疏两种类型。...类似于一个简单的2维表 [1240] 2.5.3 DataFrame DataFrame结构与Dataset 是类似的,都引|入了列的概念 与Dataset不同的是,DataFrame中的毎一-行被再次封装刃

    3.5K40

    Pandas 的Merge函数详解

    pd.merge(customer, order) 默认情况下,merge函数是这样工作的: 将按列合并,并尝试从两个数据集中找到公共列,使用来自两个DataFrame(内连接)的列值之间的交集。...当我们按索引和列合并时,DataFrame结果将由于合并(匹配的索引)会增加一个额外的列。 合并类型介绍 默认情况下,当我们合并数据集时,merge函数将执行Inner Join。...匹配在两个键列或索引中找到的相同值。 下图显示了Inner Join图,其中只选择了Customer和Order数据集上的列和/或索引之间匹配的值。...最后merge_ordered函数还可以基于数据集列执行DataFrame分组,并将它们一块一块地合并到另一个数据集。...默认情况下它查找最接近匹配的已排序的键。在上面的代码中,与delivery_date不完全匹配的order_date试图在delivery_date列中找到与order_date值较小或相等的键。

    32330

    在所有Spark模块中,我愿称SparkSQL为最强!

    而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。 DataFrame多了数据的结构信息,即schema。...为了解决这些问题,Apache Spark 3.0 引入了基于 Runtime 的查询优化。 ?...映射下推(Project PushDown) 说到列式存储的优势,映射下推是最突出的,它意味着在获取表中原始数据时只需要扫描查询中需要的列,由于每一列的所有值都是连续存储的,所以分区取出每一列的所有值就可以实现...通过这些统计值和该列的过滤条件可以判断该Row Group是否需要扫描。另外Parquet还增加诸如Bloom Filter和Index等优化数据,更加有效的完成谓词下推。...在使用Parquet的时候可以通过如下两种策略提升查询性能: 类似于关系数据库的主键,对需要频繁过滤的列设置为有序的,这样在导入数据的时候会根据该列的顺序存储数据,这样可以最大化的利用最大值、最小值实现谓词下推

    1.7K20

    直观地解释和可视化每个复杂的DataFrame操作

    Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。...Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...结果是ID列的值(a,b,c)和值列(B,C)及其对应值的每种组合,以列表格式组织。 可以像在DataFrame df上一样执行Mels操作 : ?...融合二维DataFrame可以解压缩其固化的结构并将其片段记录为列表中的各个条目。 Explode Explode是一种摆脱数据列表的有用方法。...为了访问狗的身高值,只需两次调用基于索引的检索,例如 df.loc ['dog']。loc ['height']。 要记住:从外观上看,堆栈采用表的二维性并将列堆栈为多级索引。

    13.3K20

    Pandas 2.2 中文官方教程和指南(一)

    使用 Python 字典列表时,字典键将用作列标题,每个列表中的值将用作DataFrame的列。...要选择列,请在方括号[]之间使用列标签。 注意 如果您熟悉 Python dictionaries,选择单个列与基于键选择字典值非常相似。...当使用 Python 字典的列表时,字典的键将被用作列标题,每个列表中的值将作为 DataFrame 的列。...要选择列,请在方括号[]之间使用列标签。 注意 如果你熟悉 Python dictionaries,选择单个列与基于键选择字典值非常相似。...使用iloc选择特定行和/或列时,请使用表中的位置。 您可以基于loc/iloc分配新值给选择。 转到用户指南 用户指南页面提供了有关索引和选择数据的完整概述。

    96810

    Pandas知识点-合并操作merge

    合并时,先找到两个DataFrame中的连接列key,然后将第一个DataFrame中key列的每个值依次与第二个DataFrame中的key列进行匹配,匹配到一次结果中就会有一行数据。...on参数指定的列必须在两个被合并DataFrame中都有,否则会报错。 on参数也可以指定多列,合并时按多个列进行连接。 ? 在合并时,只有多个列的值同时相等,两个DataFrame才会匹配上。...如果left_on和right_on指定不同的列,可能因为连接列的值匹配不上,结果是一个空DataFrame,将连接方式改成outer后才能得到非空的DataFrame。 ?...在新增的列中,如果连接列同时存在于两个DataFrame中,则对应的值为both,如果连接列只存在其中一个DataFrame中,则对应的值为left_only或right_only。...one_to_many: 检查第一个DataFrame中的连接列,值必须唯一。 many_to_one: 检查第二个DataFrame中的连接列,值必须唯一。

    4.4K30

    【Python】详解pandas库中pd.merge函数与代码示例

    outer’取并集,出现的A会进行一一匹配,没有同时出现的会将缺失的部分添加缺失值。 sort: 按字典顺序通过连接键对结果DataFrame进行排序。..._merge是分类类型,并且对于其合并键仅出现在“左”DataFrame中的观察值,取得值为left_only,对于其合并键仅出现在“右”DataFrame中的观察值为right_only,并且如果在两者中都找到观察点的合并键...二、代码场景示例 示例1:基于单个键的内连接 假设有两个DataFrame,df1和df2,它们有一个共同的列’key’: import pandas as pd # 创建两个示例DataFrame...2:基于多个键的外连接 使用left_on和right_on参数基于多个列进行合并: # 扩展示例DataFrame df1 = pd.DataFrame({'key1': ['K0', 'K1', '...如果为True,则将名为_merge的Categorical类型列添加到具有值的输出对象: df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a',

    1.3K10

    请解释一下列存储数据库的工作原理,并提供一个使用列存储数据库的实际应用场景。

    工作原理 列存储数据库的工作原理可以简单概括为以下几个步骤: 数据划分:数据按列划分并存储在磁盘上。每个列都有一个独立的文件或数据结构,其中包含该列的所有值。...压缩:为了减少存储空间和提高查询性能,列存储数据库通常会对列数据进行压缩。压缩算法可以根据数据的特点选择最合适的方式,例如字典压缩、位图压缩等。...列存储索引:为了加速查询操作,列存储数据库通常会使用列存储索引。列存储索引是一种特殊的索引结构,可以快速定位到包含特定值的列数据。...我们可以使用列存储数据库来存储订单数据。将每个字段作为一个列存储,并对每个列进行压缩和索引。...下面是一个使用列存储数据库的示例代码: import pandas as pd from dask.dataframe import from_pandas import dask.dataframe

    6410

    Python数据分析作业二:Pandas库的使用

    03-15'),'交易额'].sum() # df[(df['日期']>='2019-03-01') & (df['日期']<='2019-03-15')]['交易额'].sum() 使用.loc方法基于日期列的值在...,“交易额” 列的值按照指定的聚合函数进行汇总。...10、统计df中缺失值的个数 df.isnull().sum().sum() 使用.isnull()方法检查 DataFrame 中的每个单元格是否为空,并返回一个布尔值的 DataFrame,其中 True...然后,使用.sum()方法两次对这个布尔值的 DataFrame 进行求和,第一次对每列求和,第二次对每行的结果再求和。...然后,使用merge方法将df和df2 DataFrame 进行合并,根据共同的列进行匹配。默认情况下,merge方法会根据两个 DataFrame 中的共同列进行内连接。

    10200
    领券