首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。 b、一个计算每个分区的函数。...当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。...只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。...foreach(func) 在数据集的每一个元素上,运行函数func进行更新。 5:WordCount中的RDD: ?...通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。

1.2K100

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

一、RDD#filter 方法 1、RDD#filter 方法简介 RDD#filter 方法 可以 根据 指定的条件 过滤 RDD 对象中的元素 , 并返回一个新的 RDD 对象 ; RDD#filter...传入 filter 方法中的 func 函数参数 , 其函数类型 是 接受一个 任意类型 元素作为参数 , 并返回一个布尔值 , 该布尔值的作用是表示该元素是否应该保留在新的 RDD 中 ; 返回 True...#distinct 方法 1、RDD#distinct 方法简介 RDD#distinct 方法 用于 对 RDD 中的数据进行去重操作 , 并返回一个新的 RDD 对象 ; RDD#distinct...方法 不会修改原来的 RDD 对象 ; 使用时 , 直接调用 RDD 对象的 distinct 方法 , 不需要传入任何参数 ; new_rdd = old_rdd.distinct() 上述代码中 ,...old_rdd 是原始 RDD 对象 , new_rdd 是元素去重后的新的 RDD 对象 ; 2、代码示例 - RDD#distinct 方法示例 代码示例 : """ PySpark 数据处理 "

48410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark RDD的Shuffle

    Shuffle的概念来自Hadoop的MapReduce计算过程。当对一个RDD的某个分区进行操作而无法精确知道依赖前一个RDD的哪个分区时,依赖关系变成了依赖前一个RDD的所有分区。...比如,几乎所有类型的RDD操作,都涉及按key对RDD成员进行重组,将具有相同key但分布在不同节点上的成员聚合到一个节点上,以便对它们的value进行操作。...这个重组的过程就是Shuffle操作。因为Shuffle操作会涉及数据的传输,所以成本特别高,而且过程复杂。 下面以reduceByKey为例来介绍。...在进行reduce操作之前,单词“Spark”可能分布在不同的机器节点上,此时需要先把它们汇聚到一个节点上,这个汇聚的过程就是Shuffle,下图所示。  ...因为Shuffle操作的结果其实是一次调度的Stage的结果,而一次Stage包含许多Task,缓存下来还是很划算的。Shuffle使用的本地磁盘目录由spark.local.dir属性项指定。

    65430

    【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    的 分布式计算引擎 ; RDD 是 Spark 的基本数据单元 , 该 数据结构 是 只读的 , 不可写入更改 ; RDD 对象 是 通过 SparkContext 执行环境入口对象 创建的 ; SparkContext...; 2、RDD 中的数据存储与计算 PySpark 中 处理的 所有的数据 , 数据存储 : PySpark 中的数据都是以 RDD 对象的形式承载的 , 数据都存储在 RDD 对象中 ; 计算方法...: 大数据处理过程中使用的计算方法 , 也都定义在了 RDD 对象中 ; 计算结果 : 使用 RDD 中的计算方法对 RDD 中的数据进行计算处理 , 获得的结果数据也是封装在 RDD 对象中的 ; PySpark...中 , 通过 SparkContext 执行环境入口对象 读取 基础数据到 RDD 对象中 , 调用 RDD 对象中的计算方法 , 对 RDD 对象中的数据进行处理 , 得到新的 RDD 对象 其中有..., [1, 2, 3, 4, 5] rdd3 分区数量和元素: 12 , [1, 2, 3, 4, 5] 字典 转换后的 RDD 数据打印出来只有 键 Key , 没有值 ; data4 = {

    49510

    Spark RDD的Transformation

    RDD的Transformation是指由一个RDD生成新RDD的过程,比如前面使用的flatMap、map、filter操作都返回一个新的RDD对象,类型是MapPartitionsRDD,它是RDD...所有的RDD Transformation都只是生成了RDD之间的计算关系以及计算方法,并没有进行真正的计算。...RDD Transformation生成的RDD对象的依赖关系 除了RDD创建过程会生成新的RDD外,RDD Transformation也会生成新的RDD,并且设置与前一个RDD的依赖关系。...结合每一个RDD的数据和它们之间的依赖关系,每个RDD都可以按依赖链追溯它的祖先,这些依赖链接就是RDD重建的基础。因此,理解了RDD依赖,也就理解了RDD的重建容错机制。 下面以map为例进行介绍。...在Spark中,RDD是有依赖关系的,这种依赖关系有两种类型。 窄依赖。依赖上级RDD的部分分区。 Shuffle依赖。依赖上级RDD的所有分区。 对应类的关系如下图所示。

    38540

    Spark Core入门2【RDD的实质与RDD编程API】

    将每个分区内的最大值进行求和,初始值为0 scala> val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8,9),2) rdd1: org.apache.spark.rdd.RDD...全局聚合后的结果为13 将每个分区内的最大值进行求和,初始值为5 scala> val maxSum = rdd1.aggregate(5)(math.max(_, _), _ + _) maxSum:...Int = 19 总共有两个分区:分区0为1,2,3,4  分区1为5,6,7,8,9   第一个分区最大值为5(初始值),第二个分区最大值为9,全局聚合后的结果还需与初始值相加,结果为14+5=19...注意,此时"0".length的值为1,1再与"23".length即2比较,返回1。同理分区2字符串长度最小值为0,聚合后的结果则为10或01。...key相同的元组的值都组装在一起 scala> val rdd3 = rdd2.aggregateByKey("")(_ + _, _ + _) rdd3: org.apache.spark.rdd.RDD

    1.1K20

    什么是RDD?带你快速了解Spark中RDD的概念!

    通过val rdd1=sc.textFile(文件) 如果这个文件大小的block个数小于等于2,它产生的rdd的分区数就是2 如果这个文件大小的block个数大于2,它产生的rdd的分区数跟文件的block...分区函数的作用:它是决定了原始rdd的数据会流入到下面rdd的哪些分区中。...spark的分区函数有2种:第一种hashPartitioner(默认值), 通过 key.hashcode % 分区数=分区号 第二种RangePartitioner,是基于一定的范围进行分区。...3.RDD特点 RDD表示只读的分区的数据集,对RDD进行改动,只能通过RDD的转换操作,由一个RDD得到一个新的RDD,新的RDD包含了从其他RDD衍生所必需的信息。...由一个RDD转换到另一个RDD,可以通过丰富的操作算子实现,不再像MapReduce那样只能写map和reduce了,如下图所示。 ?

    3K52

    【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

    RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数...; 返回值说明 : 返回一个新的 RDD 对象 , 其中的元素是 按照指定的 排序键 进行排序的结果 ; 2、RDD#sortBy 传入的函数参数分析 RDD#sortBy 传入的函数参数 类型为 :...(T) ⇒ U T 是泛型 , 表示传入的参数类型可以是任意类型 ; U 也是泛型 , 表示 函数 返回值 的类型 可以是任意类型 ; T 类型的参数 和 U 类型的返回值 , 可以是相同的类型 ,..., 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表中每个元素的 键 Key 为单词 , 值 Value 为 数字 1 , 对上述 二元元组 列表 进行 聚合操作 , 相同的...键 Key 对应的 值 Value 进行相加 ; 将聚合后的结果的 单词出现次数作为 排序键 进行排序 , 按照升序进行排序 ; 2、代码示例 对 RDD 数据进行排序的核心代码如下 : # 对 rdd4

    49510

    spark rdd的另类解读

    1 Spark的RDD 提到Spark必说RDD,RDD是Spark的核心,如果没有对RDD的深入理解,是很难写好spark程序的,但是网上对RDD的解释一般都属于人云亦云、鹦鹉学舌,基本都没有加入自己的理解...本文基于Spark原创作者的论文,对Spark的核心概念RDD做一个初步的探讨,希望能帮助初学的球友们快速入门。...spark源码中RDD是个表示数据的基类,在这个基类之上衍生了很多的子RDD,不同的子RDD具有不同的功能,但是他们都要具备的能力就是能够被切分(partition),比如从HDFS读取数据,那么会有hadoopRDD...这需要结合两个概念来理解,第一是spark中RDD 的transform操作,另一个是spark中得pipeline。首先看RDD的transform,来看论文中的一个transform图: ?...一个RDD的血统,就是如上图那样的一系列处理逻辑,spark会为每个RDD记录其血统,借用范伟的经典小品的桥段,spark知道每个RDD的子集是”怎么没的“(变形变没的)以及这个子集是 ”怎么来的“(变形变来的

    64620

    了解Spark中的RDD

    RDD设计背景 RDD被设计用来减少IO出现的,提供了一中抽象的数据结构,不用担心的底层数据的分布式特性。只需将具体的应用逻辑将一些列转换进行处理。不同的RDD之间的转换操作形成依实现管道话。...RDD提供的是一种高度受限的共享内存模型,既RDD是只读的记录分区的集合,不能直接修改,只能给予文档sing的物理存储中的数据来创建RDD,或者是从其他RDD操作上执行转换操作得到新的RDD。...两类的操作区别是转换是用来转换RDD得到新的RDD,行动操作是接收RDD但是返回的就不是RDD了,是值或者其他集合等内容。...宽依赖:表现为一个父RDD的分区对应一个子分区 形成或者多个父RDD对应一个子RDD的分区,是一对一或者多对一的关系。 窄依赖:在这里就是一个父RDD对应多个子RDD 。 ?...假如我们在输入数据的时候,已经把数据进行了协同划分,比如我们在数据处理的时候进行的了根据键值分区,把属于多个父RDD的其中一个区的key落在了子RDD的一个分区里面,不产生在父RDD的一个分区落在子RDD

    73450

    Spark之【RDD编程】详细讲解(No4)——《RDD中的函数传递》

    本篇博客是Spark之【RDD编程】系列第四篇,为大家带来的是RDD中的函数传递的内容。 该系列内容十分丰富,高能预警,先赞后看! ?...---- 5.RDD中的函数传递 在实际开发中我们往往需要自己定义一些对于RDD的操作,那么此时需要注意的是,初始化工作是在Driver端进行的,而实际运行程序是在Executor端进行的...Boolean = { s.contains(query) } //过滤出包含字符串的RDD def getMatch1 (rdd: RDD[String]): RDD[String]...= { rdd.filter(isMatch) } //过滤出包含字符串的RDD def getMatche2(rdd: RDD[String]): RDD[String] =...x => x.contains(query_)) } ---- 本次的分享就到这里,受益的小伙伴或对大数据技术感兴趣的朋友记得点赞关注哟~下一篇博客No5将为大家带来RDD依赖关系的内容讲解

    51610

    Spark中的RDD介绍

    而且,我们通过继承结构可以看到,RDD的子类就是一堆一堆的,可以知道这部分具体实现就是对应不同数据数据进行的处理,统一作为RDD使用。 ? 图三:RDD的定义 ?...图四:RDD的定义 对于不可变的数据集,这个好说,就是我们操作之后不会改变原来的元素的值。...图五:RDD可以重复被使用的 接下来的是介绍的存储和运行过程,RDD的存储有点像我们的hdfs中的block一样。...spark认为内存中的计算是快速的,所以当作业失败的时候,我们只需要从源头rdd再计算一次就可以得到整目标rdd,为了实现这个,我们需要追溯rdd血缘信息,所以每个rdd都保留了依赖的信息。...最后一段注释其实是说spark调度的时候是基于这些rdd实现的方法去调度的,更具体一点就是spark调度的时候会帮我们划分stage和生成调度Graph,有需要的话也可以自己去实现rdd的。

    58510

    RDD的几种创建方式

    RDD的数据默认的情况下是存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。...(弹性的特性) 二、创建RDD的三种方式 在RDD中,通常就代表和包含了Spark应用程序的输入源数据。 ...当我们,在创建了初始的RDD之后,才可以通过Spark Core提供的transformation算子,对该RDD进行transformation(转换)操作,来获取其他的RDD。 ...Spark Core为我们提供了三种创建RDD的方式,包括:  使用程序中的集合创建RDD  使用本地文件创建RDD  使用HDFS文件创建RDD 2.1  应用场景 使用程序中的集合创建RDD,主要用于进行测试...RDD,应该是最常用的生产环境处理方式,主要可以针对HDFS上存储的大数据,进行离线批处理操作 2.2  实际操作 2.2.1  并行化创建RDD 如果要通过并行化集合来创建RDD,需要针对程序中的集合

    1.3K30

    Spark RDD中的持久化

    虽然持久化操作在绝大部分情况下都是将RDD缓存在内存中,但一般都会在内存不够时用磁盘顶上去(比操作系统默认的磁盘交换性能高很多)。当然,也可以选择不使用内存,而是仅仅保存到磁盘中。...所以,现在Spark使用持久化(persistence)这一更广泛的名称。 如果一个RDD不止一次被用到,那么就可以持久化它,这样可以大幅提升程序的性能,甚至达10倍以上。...默认情况下,RDD只使用一次,用完即扔,再次使用时需要重新计算得到,而持久化操作避免了这里的重复计算,实际测试也显示持久化对性能提升明显,这也是Spark刚出现时被人称为内存计算的原因。...持久化的方法是调用persist()函数,除了持久化至内存中,还可以在persist()中指定storage level参数使用其他的类型。...,总共两份副本,可提升可用性 此外,RDD.unpersist()方法可以删除持久化。

    74530

    Java接入Spark之创建RDD的两种方式和操作RDD

    首先看看思维导图,我的spark是1.6.1版本,jdk是1.7版本 spark是什么? Spark是基于内存计算的大数据并行计算框架。...Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark 部署在大量廉价硬件之上,形成集群。...,会将该函数所使用的每个变量拷贝传递给每一个任务中,有时候,一个变量需要在任务之间,或者驱动程序之间进行共享,spark支持两种共享变量: 广播变量(broadcast variables),它可以在所有节点的内存中缓存一个值...并行集合,是通过对于驱动程序中的集合调用JavaSparkContext.parallelize来构建的RDD) 第一种方式创建 下面通过代码来理解RDD和怎么操作RDD package com.tg.spark...jdk1.7或者更低版本 基于jdk1.8有更简单的写法 下面是官方文档的说明 Note: In this guide, we’ll often use the concise Java 8 lambda

    1.8K90
    领券