首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas库

使用apply()函数对每一行或每一列应用自定义函数。 使用groupby()和transform()进行分组操作和计算。...日期特征提取(Date Feature Extraction) : 在处理时间序列数据时,常常需要从日期中提取各种特征,如年份、月份、星期等。...Pandas允许通过多种方式(如基于索引、列名等)来合并多个DataFrame,从而实现数据的整合。...例如,对整个DataFrame进行多列的汇总: agg_result = df.agg (['mean', 'sum']) print(agg_result) 这种方式非常适合需要同时对多个列进行多种聚合操作的场景...相比之下,NumPy主要关注数值计算和科学计算问题,其自身有较多的高级特性,如指定数组存储的行优先或者列优先、广播功能以及ufunc类型的函数,从而快速对不同形状的矩阵进行计算。

8410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas

    [:][m:n] DataFrame.head/tail():访问前/后五行 整数标签的特殊情况 为了防止计算机不知道用户输入的索引是基于位置还是基于标签的,pd 整数标签的索引是基于标签的,也就是说我们不能像列表一样使用...DataFrame[-1]进行访问(仅针对整数作为索引的情况) 切片访问方法 DataFrame.loc[]访问 访问时主要采用[行索引或者条件,‘column1_name’]的方式对 DataFrame...进行切片,对行的指定要使用索引或者条件,对列的索引必须使用列名称,如果有多列,则还需要借助[]将列名称括起来。...,可以使用 pandas.DataFrame.dropna()方法删除记录或特征(默认删除含有缺失值的行,可以修改 how 参数进行调节,也可以调节 thresh 参数控制删除指定数量缺失值的行,亦可通过调节...交叉表是一种特殊的数据透视表,它仅指定一个特征作为行分组键,一个特征作为列分组键,是为交叉的意思。

    9.2K30

    数据专家最常使用的 10 大类 Pandas 函数 ⛵

    图片 7.数据处理一个字段可能包含很多信息,我们可以使用以下函数对字段进行数据处理和信息抽取:map:通常使用map对字段进行映射操作(基于一些操作函数),如 df[“sub_id”] = df[“temp_id...图片 8.数据透视Dataframe有 2 种常见数据:『宽』格式,指的是每一行代表一条记录(样本),每一列是一个观测维度(特征)。...『长』格式,在这种格式中,一个主题有多行,每一行可以代表某个时间点的度量。我们会在这两种格式之间转换。melt:将宽表转换为长表。...图片 9.合并数据集我们对多个数据集Dataframe合并的时候,可能用到下列的函数(包括表关联和拼接)。merge:基于某些字段进行表关联。...图片 10.分组统计我们经常会需要对数据集进行分组统计操作,常用的函数包括:groupby:创建一个 GroupBy 分组对象,可以基于一列或多列进行分组。

    3.6K21

    Pandas必会的方法汇总,数据分析必备!

    常见方法 序号 方法 说明 1 df.head() 查询数据的前五行 2 df.tail() 查询数据的末尾5行 3 pandas.qcut() 基于秩或基于样本分位数将变量离散化为等大小桶 4 pandas.cut...() 基于分位数的离散化函数 5 pandas.date_range() 返回一个时间索引 6 df.apply() 沿相应轴应用函数 7 Series.value_counts() 返回不同数据的计数值...,选取单列或列子集 4 df.1oc[val1,val2] 通过标签,同时选取行和列 5 df.iloc[where] 通过整数位置,从DataFrame选取单个行或行子集 6 df.iloc[where_i...举例:判断city列的值是否为北京 df_inner['city'].isin(['beijing']) 七、分组的方法 序号 方法 说明 1 DataFrame.groupby() 分组函数 2 pandas.cut...() 根据数据分析对象的特征,按照一定的数值指标,把数据分析对象划分为不同的区间部分来进行研究,以揭示其内在的联系和规律性。

    5.9K20

    Pandas入门教程

    (label)的,包括行标签(index)和列标签(columns),即行名称和列名称,可以使用df.loc[index_name,col_name],选择指定位置的数据,其它的用法有: 1....标签的切片对象 data.loc[:,['name','salary']][:5] iloc iloc是基于位置的索引,利用元素在各个轴上的索引序号进行选择,序号超出范围会产生IndexError,...'X','Y'],['m','n','t']]) 层次化索引应用于当目标数据的特征值很多时,我们需要对多个特征进行分析。...groupby group = data.groupby(data['name']) # 根据职位名称进行分组 group 根据职位名称进行分组: 得到一个对象,我们可以去进行平均值,总和计算; 当然了可以根据多个特征进行分组,也是没有问题的; 聚合 concat(): pd.concat

    1.1K30

    快速提升效率的6个pandas使用小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...') 用前一列对应位置的值替换缺失值: df.fillna(axis=1, method='ffill') 用下一行对应位置的值替换缺失值: df.fillna(axis=0, method='bfill...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...'].head() 年龄是一段连续值,如果我们想对它进行分组变成分类特征,比如(60,老人),可以用cut方法实现: import sys...glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。

    3.3K10

    6个提升效率的pandas小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...') 用前一列对应位置的值替换缺失值: df.fillna(axis=1, method='ffill') 用下一行对应位置的值替换缺失值: df.fillna(axis=0, method='bfill...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...年龄是一段连续值,如果我们想对它进行分组变成分类特征,比如(60,老人),可以用cut方法实现: import sys df['ageGroup...glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。

    2.4K20

    6个提升效率的pandas小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...') 用前一列对应位置的值替换缺失值: df.fillna(axis=1, method='ffill') 用下一行对应位置的值替换缺失值: df.fillna(axis=0, method='bfill...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...年龄是一段连续值,如果我们想对它进行分组变成分类特征,比如(60,老人),可以用cut方法实现: import sys df['ageGroup...glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。

    2.9K20

    python数据分析——数据分类汇总与统计

    例如, DataFrame可以在其行(axis=0)或列(axis=1)上进行分组。然后,将一个函数应用(apply)到各个分组并产生一个新值。...如果说用groupby进行数据分组,可以看做是基于行(或者说是index)操作的话,则agg函数则是基于列的聚合操作。...总结 Pandas的pivot()函数是一个非常有用的数据透视工具,可以根据指定的行、列和数值对数据进行重塑操作,方便数据分析和统计计算。通过合理使用pivot()函数,可以快速实现数据透视的功能。...on:指定重采样的列,默认为None,表示对整个DataFrame进行重采样。 level:指定重采样的行索引级别或列级别,默认为None。...示例一 【例21】对于从tushare数据库平台获取到的股票交易数据集stockdata.csv,包括股票的开盘价格,最高价格,收盘价格,最低价格,成交量等特征,股票数据采集时间为2021/01/11-

    13510

    盘一盘 Python 系列 4 - Pandas (下)

    列索引 = [行业, 价格, 交易量],名称是特征 stack: 列索引 → 行索引 列索引 (特征) 变成了行索引,原来的 DataFrame df 变成了两层 Series (第一层索引是代号,第二层索引是特征...透视表是用来汇总其它表的数据: 首先把源表分组,将不同值当做行 (row)、列 (column) 和值 (value) 然后对各组内数据做汇总操作如排序、平均、累加、计数等 这种动态将·「源表」得到想要...由于有多层索引,这时我们根据索引的 level 来分组,下面 level = 1 就是对第一层 (Year) 进行分组。...---- 多层索引中的任意个数的索引也可以用来分组,下面 level = [0,2] 就是对第零层 (Symbol) 和第二层 (Month) 进行分组。...7 总结 【合并数据表】用 merge 函数按数据表的共有列进行左/右/内/外合并。 ---- 【连接数据表】用 concat 函数对 Series 和 DataFrame 沿着不同轴连接。

    4.8K40

    再见 for 循环!pandas 提速 315 倍!

    ,我们现在要增加一个新的特征,但这个新的特征是基于一些时间条件生成的,根据时长(小时)而变化,如下: ?...如果你不基于一些条件,而是可以在一行代码中将所有电力消耗数据应用于该价格:df ['energy_kwh'] * 28,类似这种。...一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas的.isin()方法选择行,然后在矢量化操作中实现新特征的添加。...然后把这些布尔数组传递给DataFrame的.loc,将获得一个与这些小时匹配的DataFrame切片。然后再将切片乘以适当的费率,这就是一种快速的矢量化操作了。...在上面apply_tariff_isin中,我们通过调用df.loc和df.index.hour.isin三次来进行一些手动调整。如果我们有更精细的时间范围,你可能会说这个解决方案是不可扩展的。

    2.8K20

    【干货日报】用Python做数据分析更加如鱼得水!Pandas必会的方法汇总,建议收藏!

    ,选取单列或列子集 4 df.1oc[val1,val2] 通过标签,同时选取行和列 5 df.iloc[where] 通过整数位置,从DataFrame选取单个行或行子集 6 df.iloc[:,where...] 通过整数位置,从DataFrame选取单个列或列子集 7 df.iloc[where_i,where_j] 通过整数位置,同时选取行和列 8 df.at[1abel_i,1abel_j] 通过行和列标签...举例:判断city列的值是否为北京 df_inner['city'].isin(['beijing']) 七、分组的方法 序号 方法 说明 1 DataFrame.groupby() 分组函数 2 pandas.cut...() 根据数据分析对象的特征,按照一定的数值指标,把数据分析对象划分为不同的区间部分来进行研究,以揭示其内在的联系和规律性。...默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。 2 .duplicated() 判断各行是否是重复行,返回一个布尔型Series。

    4.8K40

    Python中Pandas库的相关操作

    可以使用标签、位置、条件等方法来选择特定的行和列。 5.缺失数据处理:Pandas具有处理缺失数据的功能,可以检测、删除或替换数据中的缺失值。...6.数据聚合和分组:Pandas可以通过分组和聚合操作对数据进行统计和汇总。它支持常见的统计函数,如求和、均值、最大值、最小值等。...8.数据的合并和连接:Pandas可以将多个DataFrame对象进行合并和连接,支持基于列或行的合并操作。...9.时间序列数据处理:Pandas对处理时间序列数据提供了广泛的支持,包括日期范围生成、时间戳索引、重采样等操作。...() # 替换缺失数据 df.fillna(value) 数据聚合和分组 # 对列进行求和 df['Age'].sum() # 对列进行平均值计算 df['Age'].mean() # 对列进行分组计算

    31130

    RFM会员价值度模型

    ,常用来做客户分群或价值区分 RFM模型基于一个固定时间点来做模型分析,不同时间计算的的RFM结果可能不一样  RFM模型的基本实现过程 ①设置要做计算时的截止时间节点(例如2017-5-30),用来做基于该时间的数据选取和计算...案例背景介绍  用户价值细分是了解用户价值度的重要途径,针对交易数据分析的常用模型是RFM模型 业务对RFM的结果要求 对用户做分组 将每个组的用户特征概括和总结出来,便于后续精细化运营不同的客户群体,...汇总所有数据  汇总所有数据: 将4年的数据使用pd.concat方法合并为一个完整的dataframe data_merge,后续的所有计算都能基于同一个dataframe进行,而不用写循环代码段对每个年份的数据单独计算...第1行代码使用数据框的groupby以rfm_group和year为联合对象,以会员ID会为计算维度做计数,得到每个RFM分组、年份下的会员数量 第2行代码对结果列重命名 第3行代码将rfm分组列转换为...模型是经典的一种用户分群方法,操作起来比较简单,如果数据量不是很大的时候,直接使用Excel就可以实现 RFM并不是在所有业务场景下都可以使用,一般用于零售行业(复购率相对高的行业) 使用Python的cut方法对数据进行分组

    47410

    Pandas库常用方法、函数集合

    : 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组 agg:对每个分组应用自定义的聚合函数...transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum:计算分组的总和 mean:计算分组的平均值...、最大值、累积乘积 数据清洗 dropna: 丢弃包含缺失值的行或列 fillna: 填充或替换缺失值 interpolate: 对缺失值进行插值 duplicated: 标记重复的行 drop_duplicates...将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化 pandas.DataFrame.plot.area...: 用于展开窗口的操作 at_time, between_time: 在特定时间进行选择 truncate: 截断时间序列

    31510

    dython来了!

    下面举两个例子 特征值寻找 只需要给定一个数据集,Dython 将自动找到哪些特征是分类特征,哪些特征是数值特征,计算每个特征之间的相关关联度量,并将其绘制为易于阅读的热图,所有这一切都是用一行完成的...identify_columns_by_type()可快速选择数据集中具有指定数据类型的字段 one_hot_encode()可快速对数组进行「独热编码」 split_hist()则可以快速绘制分组直方图...,帮助用户快速探索数据集特征分布 nominal nominal子模块包含了一些进阶的特征相关性度量功能 associations()可以自适应由连续型和类别型特征混合的数据集,并自动计算出相应的Pearson...子模块包含了诸多对机器学习模型进行性能评估的工具 ks_abc() 对二元分类器的正负分布执行 Kolmogorov-Smirnov 检验,然后找到最佳阈值,即能够实现最佳类别分离的阈值。...boltzmann_sampling()从对提供的数字进行玻尔兹曼采样 weighted_sampling()从对所提供数字的加权采样 4最后 Dython的主要目的是实现各种功能的简易可读性,但是在性能上面稍有欠缺

    31920
    领券