首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于keras的文本分类实践基于keras的文本分类实践

词嵌入解决了文本表示的问题,下面介绍基于深度学习网络的文本分类模型,主要包括CNN、RNN、LSTM、FastText、TextCNN、HAN。...2)RNN 循环神经网络(RNN)和CNN相比不同点在于,CNN学习空间中局部位置的特征表示,RNN学习的是时间顺序上的特征。因此RNN适合处理具有时间序列特点的数据,例如文本等。...6)HAN 相比于TextCNN,HAN(Hierarchy Attention Network)网络引入了注意力机制,其特点在于完整保留文章的结构信息,同时基于attention结构具有更好的解释性。...词向量先经过双向LSTM网络进行编码,结合隐藏层的输出与attention机制,对句子进行特征表示,经过编码的隐向量通过时间步点积得到attention权重,把隐向量做加权得到句子向量,最后句子再次通过双向...基于keras的文本分类实践 通过介绍文本分类的传统模型与深度学习模型之后,我们利用IMDB电影数据以及keras框架,对上面介绍的模型进行实践。

1.2K10

TPAMI 2021 | 时间走向二维,基于文本的视频时间定位新方法兼顾速度与精度

本文在基于文本的视频时间定位任务中验证了其有效性。相关内容将发表在 TPAMI上。 时间可以是二维的吗?这是一个好问题! 我们常常将物理世界定义为三维空间,将时间定义为一维空间。...(参考自 https://www.msra.cn/zh-cn/news/features/aaai-2020-2d-tan) 基于文本的视频时间定位的目标是,给一段文字,在视频中找到文本所对应视频片段,...许多前人的工作都是独立考虑片段和文本之间的相似程度,而忽略了片段与片段之间的上下文信息。...多尺度二维时域邻近网络(MS-2D-TAN) 本文提出的模型如图 2 所示。该模型由三个模块构成:文本编码模块,视频的二维时间特征图模块和多尺度二维时间邻近网络。下文将逐一介绍各个模块。...N 表示多少个单元片段(clip) 图 4 与其他方法的时间和内存开销对比 结语 本文针对基于文本的视频时间定位提出了一种全新的多尺度二维时间表示方式并提出了一种新的多尺度时域邻近网络(MS-2D-TAN

64030
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Python的文本情感分类

    前言 在上一期《【干货】--手把手教你完成文本情感分类》中我们使用了R语言对酒店评论数据做了情感分类,基于网友的需求,这里再使用Python做一下复现。...关于步骤、理论部分这里就不再赘述了,感兴趣的可以前往上面提到的文章查看。下面给出Python的具体代码。...Python代码 上面代码所做的工作是将用户自定义词设置到jieba分词器中,同时,构造切词的自定义函数,添加的附加功能是删除停用词。...使用TFIDF权重构造文档词条矩阵,注意,这里根据词频选择了最高频的20个词,作为矩阵的列数。 通过构建朴素贝叶斯模型,得到的样本测试集准确率约为70%。...如果你的文本非常大的话,使用这种方法会导致“词汇鸿沟”,即形成非常庞大的矩阵(而且还是稀疏矩阵),就会吃掉电脑的很多内存。而且这种方法还不能考虑到词与词之间的逻辑顺序。

    1.2K50

    基于时间的盲注

    对于基于时间的盲注来说,我们构造的语句中,包含了能否影响系统运行时间的函数,根据每次页面返回的时间,判断注入的语句是否被成功执行。...03 盲注分类 基于布尔SQL盲注 基于时间的SQL盲注 基于报错的SQL盲注 04 盲注的流程 找寻并确认sql盲注点 强制产生通用错误界面 注入带有副作用的查询 根据布尔表达式的真假结果,结合不同的返回结果确认注入是否成功...05 基于时间的盲注 (1)常用函数 If(exp,v1,v2):如果表达式 expr 成立,返回结果 v1;否则,返回结果 v2 ;Substring(s,n,len):获取从字符串 s 中的第 n...图片 (2)常用语法格式 Select * from table where id = 1 and if(布尔表达式,sleep(5),1); (3)注入思路 基于时间盲注的一般思路是延迟注入,说白了就是利用...07 时间盲注的优缺点 利用时间盲注的最大优点是对日志几乎没有影响,特别是与基于错误的攻击相比。

    75910

    【推荐系统】基于文本挖掘的推荐模型【含基于CNN的文本挖掘、python代码】

    【推荐系统】基于文本挖掘的推荐模型【含基于CNN的文本挖掘】 一、实现的主要原理及思路 1....基于CNN的评论文本挖掘 3.1数据预处理 3.2CNN 4.基于文本挖掘的推荐模型 二、 结果与分析 1. 基于CNN的评论文本挖掘 2....基于文本挖掘的推荐模型-评分预测 三、总结 基于文本挖掘的推荐模型 – 了解基于文本评论的推荐模型,实现评分预测 一、实现的主要原理及思路 1....基于CNN的评论文本挖掘 3.1数据预处理 原始数据【由于原数据集2125056万条过大,为方便调试后续代码,实现整个过程,所以数据集仅选取其中一部分,训练集大小为425001*1】 提取出我们所需要的评分以及评论文本...关于CNN的其它实例练习可见此篇基于MNIST手写体数字识别–含可直接使用代码【Python+Tensorflow+CNN+Keras】 4.基于文本挖掘的推荐模型 将自定义单条评论进行单词分量,预测

    1.3K20

    【文本分类】基于双层序列的文本分类模型

    本周推文目录如下: 周一:【点击率预估】 Wide&deep 点击率预估模型 周二:【文本分类】 基于DNN/CNN的情感分类 周三:【文本分类】 基于双层序列的文本分类模型 周四:【排序学习】 基于...在文本分类任务中,我们以情感分类任务为例,提供了基于DNN的非序列文本分类模型,以及基于CNN的序列模型供大家学习和使用(基于LSTM的模型见PaddleBook中情感分类一课)。...02 基于双层序列的文本分类 本例将演示如何在 PaddlePaddle 中将长文本输入(通常能达到段落或者篇章)组织为双层序列,完成对长文本的分类任务 |1.模型介绍 我们将一段文本看成句子的序列,而每个句子又是词语的序列...基于双层序列的文本分类模型 PaddlePaddle 实现该网络结构的代码见 network_conf.py。...对双层时间序列的处理,需要先将双层时间序列数据变换成单层时间序列数据,再对每一个单层时间序列进行处理。

    1.3K30

    【文本识别】开源 | 基于几何感知的高效文本识别,模型权重小、推理时间短、可靠性强,性能SOTA!

    University of Moratuwa 论文名称:Geometric Perception based Efficient Text Recognition 原文作者:P.N.Deelaka 内容提要 每个场景文本识别...(STR)任务都由文本定位和文本识别两个突出的子任务组成。...然而,在具有固定摄像机位置的实际应用中,如设备监视器读取、基于图像的数据输入和打印文档数据提取,底层数据往往是常规场景文本。...因此,本文引入了基本概念、理论、实现和实验结果,开发了针对任务本身高度专门化的模型,在实现SOTA性能的同时,具有最小的模型权重、更短的推理时间和更高的模型可靠性。...我们介绍了一种新的深度学习架构(GeoTRNet),训练它仅使用现有的几何特征来识别常规场景图像中的数字,模拟人类对文本识别的感知。

    26530

    基于Spark Mllib的文本分类

    基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测。...K 维向量样本数据得到一个前馈神经网络模型,以此来实现文本的类别标签预测。...是一个用来将词表示为数值型向量的工具,其基本思想是将文本中的词映射成一个 K 维数值向量 (K 通常作为算法的超参数),这样文本中的所有词就组成一个 K 维向量空间,这样我们可以通过计算向量间的欧氏距离或者余弦相似度得到文本语义的相似度...Skip-Gram 模型中一定上下文窗口内的词两两之间都会计算概率,并且通常情况下,上下文窗口越大所能涵盖的词组合情况就越全面,这样可以带来更加精确的结果,但是缺点是也会增加训练时间。...使用 StringIndexer 将原始的文本标签 (“Ham”或者“Spam”) 转化成数值型的表型,以便 Spark ML 处理。 使用 Word2Vec 将短信文本转化成数值型词向量。

    1.6K80

    基于OpenCV的表格文本内容提取

    小伙伴们可能会觉得从图像中提取文本是一件很麻烦的事情,尤其是需要提取大量文本时。PyTesseract是一种光学字符识别(OCR),该库提了供文本图像。...PyTesseract确实有一定的效果,用PyTesseract来检测短文本时,结果相当不错。但是,当我们用它来检测表格中的文本时,算法执行失败。...图1.直接使用PyTesseract检测表中的文本 图1描绘了文本检测结果,绿色框包围了检测到的单词。可以看出算法对于大部分文本都无法检测,尤其是数字。...但是,霍夫线变换结果中有一些重叠的线。较粗的线由多个相同位置,长度不同的线组成。为了消除此重叠线,我们定义了一个重叠过滤器。 最初,基于分类索引对线进行分类,水平线的y₁和垂直线的x₁。...我们只选择了最后三列,因为它对某些文本给出了奇怪的结果,其余的很好,所以我不显示它。 图6.检测到的文本—版本1 一些数字被检测为随机文本,即39个数据中的5个。这是由于最后三列与其余列不同。

    2.7K20

    基于情感词典的文本情感分类

    基于情感词典的文本情感分类 传统的基于情感词典的文本情感分类,是对人的记忆和判断思维的最简单的模拟,如上图。...基于上述思路,我们可以通过以下几个步骤实现基于情感词典的文本情感分类:预处理、分词、训练情感词典、判断,整个过程可以如下图所示。...文本情感分类 基于情感词典的文本情感分类规则比较机械化。...,我们得出如下结论: 基于情感词典的文本情感分类是容易实现的,其核心之处在于情感词典的训练。...语言系统是相当复杂的,基于情感词典的文本情感分类只是一个线性的模型,其性能是有限的。 在文本情感分类中适当地引入非线性特征,能够有效地提高模型的准确率。

    2.2K80

    基于机器学习的文本分类!

    作者:李露,西北工业大学,Datawhale优秀学习者 据不完全统计,网民们平均每人每周收到的垃圾邮件高达10封左右。垃圾邮件浪费网络资源的同时,还消耗了我们大量的时间。...文本分类一般有两种处理思路:基于机器学习的方法和基于深度学习的方法。 本文主要基于机器学习的方法,介绍了特征提取+分类模型在文本分类中的应用。具体目录如下: ?...在计算机视觉中可以把图片的像素看作特征,每张图片都可以视为的特征图,然后用一个三维矩阵带入计算。 但是在自然语言领域,上述方法却不可行,因为文本的长度是不固定的。...文本分类的第一步就是将不定长的文本转换到定长的空间内,即词嵌入。 2.1 One-hot One-hot方法将每一个单词使用一个离散的向量表示,将每个字/词编码成一个索引,然后根据索引进行赋值。...三、基于机器学习的文本分类 接下来我们将研究文本表示对算法精度的影响,对比同一分类算法在不同文本表示下的算法精度,通过本地构建验证集计算F1得分。

    2.6K21

    基于TorchText的PyTorch文本分类

    在这篇文章中,我们使用PyTorch来进行多类文本分类,因为它有如下优点: PyTorch提供了一种强大的方法来实现复杂的模型体系结构和算法,其预处理量相对较少,计算资源(包括执行时间)的消耗也较少。...PyTorch提供了一个名为TorchText的强大库,其中包含用于预处理文本的脚本和一些流行的NLP数据集的源代码。...EmbeddingBag通过计算嵌入的平均值来处理长度可变的文本条目。 这个模型将在DBpedia数据集上进行训练,其中文本属于14个类。训练成功后,模型将预测输入文本的类标签。...ngrams特征用于捕获有关本地语序的重要信息。 我们使用bigram,数据集中的示例文本将是单个单词加上bigrams字符串的列表。...现在,我们将在单个新闻文本字符串上测试我们的模型,并预测给定新闻文本的类标签。

    1.2K40

    基于 Prophet 的时间序列预测

    预测未来永远是一件让人兴奋而又神奇的事。为此,人们研究了许多时间序列预测模型。然而,大部分的时间序列模型都因为预测的问题过于复杂而效果不理想。...这是因为时间序列预测不光需要大量的统计知识,更重要的是它需要将问题的背景知识融入其中。...下面分别介绍模型中各部分的构建。 2.3.1 增长趋势 增长趋势是整个模型的核心组件,它表示认为整个时间序列是如何增长的,以及预期未来时间里是如何增长的。...d.预测中需要的其他参数 freq:数据中时间的统计单位(频率),默认为”D”,按天统计,具体可参考这里。 periods:需要预测的未来时间的个数。...上图是一个整体的预测结果图,它包含了从历史数据的时间起点到期望预测的未来时间终点的结果。图中的ds坐标表示时间,y坐标对应预测值。

    4.5K103

    二十.基于Keras+RNN的文本分类vs基于传统机器学习的文本分类

    文章目录: 一.RNN文本分类 1.RNN 2.文本分类 二.基于传统机器学习贝叶斯算法的文本分类 1.MultinomialNB+TFIDF文本分类 2.GaussianNB+Word2Vec文本分类...---- 2.文本分类 文本分类旨在对文本集按照一定的分类体系或标准进行自动分类标记,属于一种基于分类体系的自动分类。...深度学习文本分类方法包括: 卷积神经网络(TextCNN) 循环神经网络(TextRNN) TextRNN+Attention TextRCNN(TextRNN+CNN) 推荐牛亚峰老师的文章:基于 word2vec...和 CNN 的文本分类 :综述 & 实践 ---- 二.基于传统机器学习的文本分类 1.MultinomialNB+TFIDF文本分类 推荐作者之前的文章:[python数据挖掘课程] 二十一.朴素贝叶斯分类器详解及中文文本舆情分析...+Attention新闻标题文本分类 - ilivecode [7] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 - 知乎清凇 [8] 基于 word2vec

    1.3K20

    基于分割思想的文本检测算法

    本文使用 Zhihu On VSCode 创作并发布 在文本检测任务中,较少出现字符重合的情况(重合的字符人也认不出来啊),所以基于分割思想的文本检测算法也能得到很好的效果。 1....使用人工特征 文本检测领域常见的人工特征算法有两种:SWT和MSER,这些方法的效率比滑窗法更高,精度也更好。 SWT算法思路:图片中的文本都具有一致宽度的线条。...下面四个算法采用了四种不同的方式实现了文本实例的分隔。 EAST 网络结构如下: ?...因为感受野的问题,EAST对长文本效果较差,有长文本检测需求的可以尝试AdvancedEAST。 PixelLink 网络结构如下: ?...字符级的高斯map让文本实例的分隔变得更加简单。

    1.8K20

    基于机器学习的文本情感极性分析

    Python做文本挖掘的情感极性分析(基于情感词典的方法)(同1.1.4) 2.1.2 正负向语料库 来源于有关中文情感挖掘的酒店评论语料, http://www.datatang.com/data/11936...2.1.3 验证集 Amazon上对iPhone 6s的评论,来源已不可考…… 数据预处理 2.2.1 分词 Python做文本挖掘的情感极性分析(基于情感词典的方法)(同1.2.1) import numpy...(基于情感词典的方法)(同1.2.2) 2.2.3 训练词向量 模型的输入需是数据元组,那么就需要将每条数据的词语组合转化为一个数值向量,常见的转化算法有但不仅限于如下几种: ?...,misclassified多为负向文本被分类为正向文本,其中AUC = 0.92,KSValue = 0.7。...,但相比于基于词典的情感分析方法,基于机器学习的方法更为客观。

    2.1K50
    领券