首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于来自另一个数据帧的查找值创建pandas列

是指在使用pandas库进行数据处理时,根据一个数据帧中的某一列的值,在另一个数据帧中查找对应的值,并将查找到的值作为新的列添加到原始数据帧中。

在pandas中,可以使用merge()函数或join()函数来实现这个功能。这两个函数可以根据指定的列将两个数据帧进行合并,并根据匹配的值创建新的列。

具体步骤如下:

  1. 导入pandas库:import pandas as pd
  2. 创建两个数据帧df1和df2,分别表示原始数据帧和用于查找的数据帧。
  3. 使用merge()函数或join()函数将两个数据帧合并,指定合并的列名。
    • 使用merge()函数的示例代码:df_merged = pd.merge(df1, df2, on='column_name')
    • 使用join()函数的示例代码:df_merged = df1.join(df2.set_index('column_name'), on='column_name')
  • 将查找到的值作为新的列添加到原始数据帧中。
    • 使用merge()函数的示例代码:df1['new_column'] = df_merged['matched_column']
    • 使用join()函数的示例代码:df1['new_column'] = df_merged['matched_column']

这样,就可以基于来自另一个数据帧的查找值创建新的列了。

推荐的腾讯云相关产品:腾讯云数据库(TencentDB),提供了多种数据库产品,包括关系型数据库、NoSQL数据库等,可以满足不同场景下的数据存储需求。产品介绍链接地址:https://cloud.tencent.com/product/cdb

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas 查找,丢弃唯一

前言 数据清洗很重要,本文演示如何使用 Python Pandas查找和丢弃 DataFrame 中唯一,简言之,就是某数值除空外,全都是一样,比如:全0,全1,或者全部都是一样字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据 NaN 也会被 Pandas 认为是一种 “ ”,如下图: 所以只要把缺失先丢弃,再统计该唯一个数即可。...代码实现 数据读入 检测唯一所有并丢弃 最后总结一下,Pandas数据清洗方面有非常多实用操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...唯一 ” --> “ 除了空以外唯一个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我其余文章,提建议,共同进步。

5.7K21

Pandas中如何查找中最大

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找中最大,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

34610
  • 如何在 Pandas创建一个空数据并向其附加行和

    在本教程中,我们将学习如何创建一个空数据,以及如何在 Pandas 中向其追加行和。...Pandas.Series 方法可用于从列表创建系列。也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据。...ignore_index参数设置为 True 以在追加行后重置数据索引。 然后,我们将 2 [“薪水”、“城市”] 附加到数据。“薪水”作为系列传递。序列索引设置为数据索引。...然后,我们在数据后附加了 2 [“罢工率”、“平均值”]。 “罢工率”作为系列传递。“平均值”作为列表传递。列表索引是列表默认索引。...Pandas 库创建一个空数据以及如何向其追加行和

    27330

    用过Excel,就会获取pandas数据框架中、行和

    df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例中为4行5。 图3 使用pandas获取 有几种方法可以在pandas中获取。...语法如下: df.loc[行,] 其中,是可选,如果留空,我们可以得到整行。由于Python使用基于0索引,因此df.loc[0]返回数据框架第一行。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格 要获取单个单元格,我们需要使用行和交集。...记住这种表示法一个更简单方法是:df[列名]提供一,然后添加另一个[行索引]将提供该特定项。 假设我们想获取第2行Mary Jane所在城市。...接着,.loc[[1,3]]返回该数据框架第1行和第4行。 .loc[]方法 正如前面所述,.loc语法是df.loc[行,],需要提醒行(索引)和可能是什么?

    19.1K60

    【Python】基于某些删除数据框中重复

    subset:用来指定特定,根据指定数据框去重。默认为None,即DataFrame中一行元素全部相同时才去除。...# coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库 import numpy as np #...导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框中重复') #把路径改为数据存放路径 name = pd.read_csv('name.csv...结果和按照某一去重(参数为默认)是一样。 如果想保留原始数据框直接用默认即可,如果想直接在原始数据框删重可设置参数inplace=True。...但是对于两中元素顺序相反数据框去重,drop_duplicates函数无能为力。 如需处理这种类型数据去重问题,参见本公众号中文章【Python】基于组合删除数据框中重复。 -end-

    19.5K31

    【Python】基于组合删除数据框中重复

    最近公司在做关联图谱项目,想挖掘团伙犯罪。在准备关系数据时需要根据两组合删除数据框中重复,两中元素顺序可能是相反。...二、基于删除数据框中重复 1 加载数据 # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库...import numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框中重复') #把路径改为数据存放路径 df =...如需数据实现本文代码,请到公众号中回复:“基于删重”,可免费获取。 得到结果: ?...numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据框中重复') #把路径改为数据存放路径 name = pd.read_csv

    14.7K30

    算法与数据结构(十二) 散(哈希)表创建查找(Swift版)

    也就是说,它通过计算一个关于键值函数,将所需查询数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做散函数,存放记录数组称做散列表。...散列表创建就是将Value通过散函数和处理散key冲突函数来生成一个key, 这个key就是Value查找映射,我们就可以通过key来访问Value。...一、散列表创建原理 本部分我们将以一系列示意图来看一下如何来创建一个哈希表,我们就将下方截图中数列中数据来存储到哈希表中。...在下方实例中,我们采用除留取余法来创建value映射key, 如果产生冲突,就采用线性探测法来处理key冲突。下方就是我们要构建哈希表数据以及所需函数和处理冲突函数。 ?...我们以在创建查找表中查找93为例,首先通过创建哈希表时使用哈希函数来计算93对应key, key = 93 % 11 = 5。

    1.6K100

    盘点使用Pandas解决问题:对比两数据取最大5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】粉丝问了一个关于使用pandas解决两数据对比问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2数据,想每行取两数据最大,形成一个新,该怎么写?最开始【iLost】自己使用了循环方法写出了代码,当然是可行,但是写就比较难受了。...二、解决过程 这里给出5个方法,感谢大佬们解答,一起来看看吧! 方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉小伙伴,接受起来就有点难了。...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两数据最大,作为新问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.1K30

    报错:“来自数据String类型给定不能转换为指定目标类型nvarchar。”「建议收藏」

    大家好,又见面了,我是你们朋友全栈君。 解决sql server批量插入时出现“来自数据String类型给定不能转换为指定目标类型nvarchar。”...问题 问题原因:源一个字段长度超过了目标数据库字段最大长度 解决方法:扩大目标数据库对应字段长度 一般原因是源字段会用空字符串填充,导致字符串长度很大,可以使用rtrim去除 解决sql server...批量插入时出现“来自数据String类型给定不能转换为指定目标类型smallint。”...问题 问题原因:源一个字段类型为char(1),其中有些为空字符串,导数据时不能自动转换成smallint类型 解决方法:将char类型强转为smallint类型之后再导入数据

    1.8K50

    Pandas 学习手册中文第二版:1~5

    以下显示Missoula中大于82度: 然后可以将表达式结果应用于数据(和序列)[]运算符,这仅导致返回求值为True表达式行: 该技术在 pandas 术语中称为布尔选择,它将构成基于特定选择行基础...索引为我们提供了一种基于其标签在Series中查找非常有效手段。...创建数据期间行对齐 选择数据特定和行 将切片应用于数据 通过位置和标签选择数据行和 标量值查找 应用于数据布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中示例...由于在创建时未指定索引,因此 Pandas 创建了一个基于RangeIndex标签,标签开头为 0。 数据在第二中,由1至5组成。 数据列上方0是该名称。...DataFrame对象以及基于各种索引和选择数据各种方法。

    8.3K10

    Pandas 秘籍:1~5

    随着 Pandas 越来越大,越来越流行,事实证明,对象数据类型对于具有字符串所有来说太通用了。 Pandas 创建了自己分类数据类型,以处理具有固定数量可能字符串(或数字)。...通常,这些新将从数据集中已有的先前列创建Pandas 有几种不同方法可以向数据添加新。 准备 在此秘籍中,我们通过使用赋值在影片数据集中创建,然后使用drop方法删除。...看到此列百分比来自我们新创建actor_director_facebook_likes会很有趣。 在创建百分比之前,我们先进行一些基本数据验证。...在分析期间,可能首先需要找到一个数据组,该数据组在单个中包含最高n,然后从该子集中找到最低m基于不同。...Pandas 通过数据query方法具有替代基于字符串语法,该语法可提供更高清晰度。 数据query方法是实验性,不具备布尔索引功能,因此不应用于生产代码。

    37.5K10

    合并多个Excel文件,Python相当轻松

    我可以使用VLOOKUP查找每个“保险ID”,并将所有数据字段合并到一个电子表格中!...,df_2称为右数据框架,将df_2与df_1合并基本上意味着我们将两个数据框架所有数据合并在一起,使用一个公共唯一键匹配df_2到df_1中每条记录。...图6:合并数据框架,共21行和8 第二次合并 我们获取第一次合并操作结果,然后与另一个df_3合并。...图7 关于最终组合数据框架一些有趣观察结果: “保险ID”(来自df_1)和“ID”(来自df_2)都被带到了数据框架中,我们必须删除一个来清理数据。...有两个“保单现金,保单现金_x(来自df_2)和保单现金_y(来自df_3)。当有两个相同时,默认情况下,pandas将为列名末尾指定后缀“_x”、“_y”等。

    3.8K20

    直观地解释和可视化每个复杂DataFrame操作

    大多数数据科学家可能会赞扬Pandas进行数据准备能力,但许多人可能无法利用所有这些能力。...操作数据可能很快会成为一项复杂任务,因此在Pandas八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它技巧。 Pivot 透视表将创建一个新“透视表”,该透视表将数据现有投影为新表元素,包括索引,。...Melt Melt可以被认为是“不可透视”,因为它将基于矩阵数据(具有二维)转换为基于列表数据(列表示,行表示唯一数据点),而枢轴则相反。...记住:合并数据就像在水平行驶时合并车道一样。想象一下,每一都是高速公路上一条车道。为了合并,它们必须水平合并。

    13.3K20

    Pandas 学习手册中文第二版:6~10

    具体来说,我们将检查: 对序列或数据创建和使用索引 用索引选择方法 在索引之间移动数据 重新索引 Pandas 对象 对序列或数据创建和使用索引 索引可以显式创建,也可以让 Pandas 隐式创建....at[] 类似于.loc[],但这只能检索单个。 .iloc[] 查找基于基于0位置,而不是基于索引标签。 .ix[] 混合,当给出整数时将尝试基于0查找; 其他类型是基于标签。...以下代码演示了使用sp500数据通过MultiIndex创建和访问数据。 假设我们要通过Sector和Symbol来组织此数据,以便我们可以基于来自两个变量组合来有效地查找数据。...下面的屏幕截图通过创建一个数据并将其转换为category第二来说明这一点,该数据然后是第二。...在本节中,我们将研究其中许多内容,包括: 在数据或序列上执行算术 获取值计数 确定唯一(及其计数) 查找最大和最小 找到 n 个最小和 n 个最大 计算累计数据或序列上执行算术

    2.3K20

    Pandas 秘籍:6~11

    六、索引对齐 在本章中,我们将介绍以下主题: 检查索引对象 生成笛卡尔积 索引爆炸 用不相等索引填充值 追加来自不同数据 突出显示每一最大 用方法链复制idxmax 寻找最常见最大 介绍...最大差异之一来自第 6 步。索引是不可变创建后就无法更改它们。.../img/00101.jpeg)] 追加来自不同数据 所有数据都可以向自己添加新。...但是,像往常一样,每当一个数据另一个数据或序列添加一个新时,索引都将在创建之前首先对齐。 准备 此秘籍使用employee数据集添加一个新,其中包含该员工部门最高薪水。...在数据的当前结构中,它无法基于单个绘制不同组。 但是,第 23 步显示了如何设置数据,以便 Pandas 可以直接绘制每个总统数据,而不会像这样循环。

    34K10

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    Pandas 适用于以下各类数据: 具有异构类型表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 时间序列数据; 带有行/标签任意矩阵数据(同构类型或者是异构类型...用于将一个 Series 中每个替换为另一个,该可能来自一个函数、也可能来自于一个 dict 或 Series。...Isin () 有助于选择特定中具有特定(或多个)行。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 返回数据一个子集。

    6.7K20

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    Pandas 适用于以下各类数据: 具有异构类型表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 时间序列数据; 带有行/标签任意矩阵数据(同构类型或者是异构类型...用于将一个 Series 中每个替换为另一个,该可能来自一个函数、也可能来自于一个 dict 或 Series。...Isin () 有助于选择特定中具有特定(或多个)行。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 返回数据一个子集。

    7.5K30

    精通 Pandas 探索性分析:1~4 全

    此series对象将仅包含来自此特定。 我们如何确定这是series对象?...Pandas 数据是带有标签行和多维表格数据结构。 序列是包含单列数据结构。 Pandas 数据可以视为一个或多个序列对象容器。.../img/dab57015-7753-4026-9211-ffccb1e7da5c.png)] 从前面的屏幕快照中可以看出,选择多个创建另一个数据,而仅选择一个创建series对象。...我们还将学习 Pandas filter方法以及如何在实际数据集中使用它,以及基于将根据数据创建布尔序列保护数据方法。 我们还将学习如何将条件直接传递给数据进行数据过滤。...为了过滤行,我们可以使用一些有趣技术-首先,我们创建布尔序列。 布尔序列基于我们数据集中价格

    28.2K10
    领券