首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas | 如何新增数据列?

前言 在数据分析时,原始数据往往不能满足我们的需求,经常需要按照一定条件创建新的数据列或者修改原有数据列,然后进行后续分析。...本次我们将介绍四种新增数据列的方法:直接赋值、df.apply方法、df.assign方法以及按条件筛选后赋值。 本文框架 0. 导入Pandas 1. 读取数据与数据预处理 2....导入Pandas import pandas as pd 1. 读取数据与数据预处理 # 读取数据 data = pd.read_csv("....astype("int32") -------------------------------------------------------------------------------- # 查看转化后数据框...dataframe对象接收返回值; ③assign不仅可用于创建新的列,也可用于更新已有列,此时创建的新列会覆盖原有列。

2.1K40

pandas基础:重命名pandas数据框架列

标签:Python与Excel,pandas 重命名pandas数据框架列有很多原因。例如,可能希望列名更具描述性,或者可能希望缩短名称。本文将介绍如何更改数据框架中的名称。...准备用于演示的数据框架 pandas库提供了一种从网页读取数据的便捷方式,因此我们将从百度百科——世界500强公司名单——加载一个表格。 图1 看起来总共有6列。下面单独列出了这个表的列。...图3 让我们对数据框架进行一些修改。首先,我们将删除一些不需要的列。我们不需要下列栏目:上午排名,所以我们删除它们。 图4 删除列后,我们可以检查df.head()以确认删除成功–现在只有5列。...我们可以使用这种方法重命名索引(行)或列,我们需要告诉pandas我们正在更改什么(即列或行),这样就不会产生混淆。还需要在更改前后告诉pandas列名,这提高了可读性。...我选择不覆盖原始数据框架(即默认情况下inplace=False),因为我希望保留原始数据框架以供其他演示使用。注意,我们只需要传入计划更改名称的列。

1.9K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】基于某些列删除数据框中的重复值

    # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库 import numpy as np #...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...注:后文所有的数据操作都是在原始数据集name上进行。 三、按照某一列去重 1 按照某一列去重(参数为默认值) 按照name1对数据框去重。...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    20.5K31

    Pandas基础:在Pandas数据框架中移动列

    标签:pandas,Python 有时候,我们需要在pandas数据框架内移动一列,shift()方法提供了一种方便的方法来实现。...为了演示起见,我们创建两个数据框架:df包含字母索引,df2包含日期时间索引。...在pandas数据框架中向上/向下移动列 要向下移动列,将periods设置为正数。要向上移动列,将其设置为负数。 注意,只有数据发生了移位,而索引保持不变。...数据移动了,现在有两个空行,由np.nan值自动填充。 对时间序列数据移动列 当处理时间序列数据时,可以通过包含freq参数来改变一切,包括索引和数据。...注意下面的例子,索引随着所有数据向下(向前)移动了2天。目前,如果想使用freq参数,索引必须是datetime类型的数据,否则pandas将引发NotImplementedError。

    3.2K20

    Pandas数据切片与索引

    01 前言 我们经常让Excel表格数据与Pandas的DataFrame数据做类比学习,而在实际的应用中,我们发现,关于数据的选择是很重要的一部分。...例如,要选择某几行某几列,或者符合某种条件的数据(类似于Excel中的筛选功能)。 因此,本篇文章就简单介绍几种Pandas数据选择的方法,用最少的知识点,解决最重要的问题。...02 loc和iloc 在对Pandas数据进行操作时,最常用的就是选择部分行和列。 首先为loc,这个根据行和列索引名称来进行选择,例如下面的数据。...行索引就是0到6,列索引就是name、course和score。 ? 其用法为loc[行索引,列索引]。 例如,为选择score列可用下面代码,前面我们选择全部行,后面选择score列。...最后iloc用法和loc一样,只是iloc使用行和列的数字索引,也就是说,行索引就是0到6,列索引就是0到2。

    77610

    【Python】基于多列组合删除数据框中的重复值

    本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...如需数据实现本文代码,请到公众号中回复:“基于多列删重”,可免费获取。 得到结果: ?...numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv

    14.7K30

    数据分析工具Pandas1.什么是Pandas?2.Pandas的数据结构SeriesDataFrame3.Pandas的索引操作索引对象IndexSeries索引DataFrame索引高级索引:标签

    文章来源:Python数据分析 参考学习资料: http://pandas.pydata.org 1.什么是Pandas Pandas的名称来自于面板数据(panel data)和Python数据分析...Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建,提供了 高级数据结构 和 数据操作工具,它是使Python成为强大而高效的数据分析环境的重要因素之一。...类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 1....通过列索引获取列数据(Series类型) df_obj[col_idx] 或 df_obj.col_idx 示例代码: # 通过列索引获取列数据 print(df_obj2['A']) print...:标签、位置和混合 Pandas的高级索引有3种 1. loc 标签索引 DataFrame 不能直接切片,可以通过loc来做切片 loc是基于标签名的索引,也就是我们自定义的索引名 示例代码

    3.9K20

    pandas合并和连接多个数据框

    pandas作为数据分析的利器,提供了数据读取,数据清洗,数据整形等一系列功能。...当需要对多个数据集合并处理时,我们就需要对多个数据框进行连接操作,在pandas中,提供了以下多种实现方式 1. concat concat函数可以在行和列两个水平上灵活的合并多个数据框,基本用法如下...,对于子数据框中没有的列,以NaN进行填充。...,对于不同shape的数据框,尽管行标签和列标签有重复值,但是都是当做独立元素来处理,直接取了并集,这个行为实际上由join参数控制,默认值为outer。...,要求列数相同,用法如下 # append 函数,将新的数据框追加为行 >>> a = pd.DataFrame(np.random.rand(2, 2), columns=['A', 'B']) >>

    1.9K20

    pandas数据清洗,排序,索引设置,数据选取

    此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shape,index...,值为频率,按计数降序排列 ---- 数据清洗 丢弃值drop() df.drop(labels, axis=1)# 按列(axis=1),丢弃指定label的列,默认按行。。。...---- 索引设置 reindex() 更新index或者columns, 默认:更新index,返回一个新的DataFrame # 返回一个新的DataFrame,更新index,原来的index...index 打造层次化索引的方法 # 将columns中的其中两列:race和sex的值设置索引,race为一级,sex为二级 # inplace=True 在原数据集上修改的 adult.set_index...'race','sex'], inplace = True) reset_index() 将使用set_index()打造的层次化逆向操作 既是取消层次化索引,将索引变回列,并补上最常规的数字索引

    3.3K20

    数据分析索引总结(上)Pandas单级索引

    读取csv数据的时候, 使用参数index_col指定表中的列作为索引 import numpy as np import pandas as pd df = pd.read_csv('data/table.csv...',index_col='ID') df.head() 效果等同于读取数据后, 使用set_index方法指定某一列为索引,但index_col的方式更简洁。...df.iloc[3::4,7::-2]#.head() ⑥ 函数式索引 注意: 由于是iloc,返回值必须是由默认整数索引作为元素构成的类list的数据结构。...,Pandas中的索引对齐是一个重要特征,很多时候非常使用。...返回所有的行索引(转换为区间后)与给定区间有重叠的行。 cut得到的区间实际上是个catagory 类型的数据,并不能直接用来判断和给定区间是否重合,必须使用astype转换为区间类型的数据。

    5.1K40
    领券