首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于2D着色器的阴影实现

是一种在计算机图形学中常用的技术,用于在2D场景中模拟光照效果和产生阴影效果。它通过在渲染过程中使用着色器来计算每个像素的颜色值,从而实现阴影效果。

这种技术的分类可以根据实现方式进行划分,常见的有阴影贴图、阴影映射和阴影体积。

  1. 阴影贴图(Shadow Mapping):阴影贴图是一种基于深度缓冲的技术,它通过渲染场景的深度信息到一个纹理中,然后在渲染阴影时使用这个纹理来判断像素是否在阴影中。优势是实现简单,适用于实时渲染,常用于游戏中的阴影效果。腾讯云相关产品推荐:云游戏(https://cloud.tencent.com/product/cg)。
  2. 阴影映射(Shadow Mapping):阴影映射是一种基于光源的投影变换的技术,它通过将场景从光源的视角渲染到一个深度贴图中,然后在渲染阴影时使用这个深度贴图来判断像素是否在阴影中。优势是可以实现更精确的阴影效果,适用于需要高质量阴影的场景。腾讯云相关产品推荐:云游戏(https://cloud.tencent.com/product/cg)。
  3. 阴影体积(Shadow Volume):阴影体积是一种基于几何体的技术,它通过在场景中生成阴影几何体来计算阴影效果。优势是可以实现更真实的阴影效果,适用于需要高度真实感的场景。腾讯云相关产品推荐:无。

基于2D着色器的阴影实现在游戏开发、虚拟现实、增强现实等领域有广泛的应用。它可以增强场景的逼真度,提升用户体验。例如,在游戏中,阴影可以增加场景的深度感和真实感,使得游戏画面更加生动。在虚拟现实和增强现实中,阴影可以帮助用户更好地融入虚拟环境,提升沉浸感。

总结:基于2D着色器的阴影实现是一种常用的计算机图形学技术,用于模拟光照效果和产生阴影效果。它可以通过阴影贴图、阴影映射和阴影体积等方式实现。在游戏开发、虚拟现实、增强现实等领域有广泛的应用。腾讯云相关产品推荐:云游戏(https://cloud.tencent.com/product/cg)。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Shader经验分享

    流水线 1.应用阶段:(CPU)输出渲染图元,粗粒度剔除等 比如完全不在相机范围内的需要剔除,文件系统的粒子系统实现就用到粗粒度剔除。 2.几何阶段:(GPU)把顶点坐标转换到屏幕空间,包含了模型空间 到世界空间 到观察空间(相机视角view) 到齐次裁剪空间(投影project2维空间,四维矩阵,通过-w<x<w判断是否在裁剪空间) 到归一化设备坐标NDC(四维矩阵通过齐次除法,齐次坐标的w除以xyz实现归一化) 到屏幕空间(通过屏幕宽高和归一化坐标计算)。 a.顶点着色器:坐标变换和逐顶点光照,将顶点空间转换到齐次裁剪空间。 b.曲面细分着色器:可选 c.几何着色器:可选 d.裁剪:通过齐次裁剪坐标的-w<x<w判断不在视野范围内的部分或者全部裁剪,归一化。 e.屏幕映射:把NDC坐标转换为屏幕坐标 3.光栅化阶段:(GPU)把几何阶段传来的数据来产生屏幕上的像素,计算每个图元覆盖了哪些像素,计算他们的颜色、 a.三角形设置:计算网格的三角形表达式 b.三角形遍历:检查每个像素是否被网格覆盖,被覆盖就生成一个片元。 c.片元着色器:对片元进行渲染操作 d.逐片元操作:模板测试,深度测试 混合等 e.屏幕图像 ------------------------------------------------------- 矩阵: M*A=A*M的转置(M是矩阵,A是向量,该公式不适合矩阵与矩阵) 坐标转换: o.pos = mul(UNITY_MATRIX_MVP, v.vertex);顶点位置模型空间到齐次空间 o.worldNormal = mul((float3x3)_Object2World,v.normal);//游戏中正常的法向量转换,转换后法向量可能不与原切线垂直,但是不影响游戏显示,而且大部分显示也是差不多的。一般用这个就行了。 o.worldNormal = mul(v.normal, (float3x3)_World2Object);顶点法向量从模型空间转换到世界空间的精确算法,公式是用_Object2World该矩阵的逆转置矩阵去转换法线。然后通过换算得到该行。 ------------------------------------------------------- API: UNITY_MATRIX_MVP 将顶点方向矢量从模型空间变换到裁剪空间 UNITY_MATRIX_MV 将顶点方向矢量从模型空间变换到观察空间 UNITY_MATRIX_V 将顶点方向矢量从世界空间变换到观察空间 UNITY_MATRIX_P 将顶点方向矢量从观察空间变换到裁剪空间 UNITY_MATRIX_VP 将顶点方向矢量从世界空间变换到裁剪空间 UNITY_MATRIX_T_MV UNITY_MATRIX_MV的转置矩阵 UNITY_MATRIX_IT_MV UNITY_MATRIX_MV的逆转置矩阵,用于将法线从模型空间转换到观察空间 _Object2World将顶点方向矢量从模型空间变换到世界空间,矩阵。 _World2Object将顶点方向矢量从世界空间变换到模型空间,矩阵。 模型空间到世界空间的矩阵简称M矩阵,世界空间到View空间的矩阵简称V矩阵,View到Project空间的矩阵简称P矩阵。 --------------------------------------------- _WorldSpaceCameraPos该摄像机在世界空间中的坐标 _ProjectionParams _ScreenParams _ZBufferParams unity_OrthoParams unity_Cameraprojection unity_CameraInvProjection unity_CameraWorldClipPlanes[6]摄像机在世界坐标下的6个裁剪面,分别是左右上下近远、 ---------------------------- 1.表面着色器 void surf (Input IN, inout SurfaceOutput o) {}表面着色器,unity特殊封装的着色器 Input IN:可以引用外部定义输入参数 inout SurfaceOutput o:输出参数 struct SurfaceOutput//普通光照 { half3 Albedo;//纹理,反射率,是漫反射的颜色值 half3 Normal;//法线坐标 half3 Emission;//自发光颜色 half Specular;//高光,镜面反射系数 half Gloss;//光泽度 half Alpha;//alpha通道 } 基于物理的光照模型:金属工作流Surfa

    04

    Unity Shader常用函数,标签,指令,宏总结(持续更新)

    UnityObjectToClipPos(v.vertex); 最基本的顶点变换,模型空间 ==》裁剪空间 mul(unity_ObjectToWorld, v.vertex); 顶点:模型空间 ==》世界空间,多用于顶点着色器 UnityObjectToWorldNormal(v.normal); 法线:模型空间 ==》世界空间,多用于顶点着色器,float3(归一化后fixed3) UnityWorldSpaceLightDir(i.worldPos.xyz); 仅前向渲染,世界空间顶点位置 ==》世界空间光源方向,多用于片元着色器,一般会顺带归一化(fixed3) UnityWorldSpaceViewDir(i.worldPos.xyz); 世界空间顶点位置 ==》世界空间视线方向,多用于片元着色器,一般会顺带归一化(fixed3) P.S.一般[0,1]范围内的尽量用低精度fixed类型,如单位矢量,颜色等 Tags{"lightmode"="forwardbase"}(字符串不区分大小写,编译时会自动转为所有字母大写) 指示光照模型为前向渲染的基本模式 #include "UnityCG.cginc"(字符串不区分大小写,编译时会自动转为所有字母大写) 包含大量基本内置函数,宏等,一般自带 #include "lighting.cginc"(字符串不区分大小写,编译时会自动转为所有字母大写) 包含基本光照属性,如 _LightColor0 UNITY_LIGHTMODEL_AMBIENT(使用大写) 环境光,一般取前三个分量rgb(xyz);基本光照模型需要有环境光,漫反射,高光等 基本纹理&法线贴图: TRANSFORM_TEX(v.uv, _MainTex); 基本纹理变换,用于顶点着色器,相当于v.uv*_MainTex_ST.xy + _MainTex_ST.zw;(其中xy存缩放,zw存偏移,对应面板参数);_MainTex_ST需额外定义 tex2D(_MainTex, i.uv); 基本纹理采样,用于片元着色器;一般会定义染色属性并与之相乘得到反射率(albedo),反射率作为环境光和漫反射计算的因子 UnpackNormalWithScale(packedNormal, _BumpScale); 反映射法线贴图采样结果得到顶点空间中的法线方向,同时计算凹凸映射的缩放;packedNormal为法线贴图直接采样结果,_BumpScale为凹凸缩放值;法线贴图必须进行导入设置为Normal Map UnityObjectToWorldDir(v.tangent.xyz); 方向(切线):模型空间 ==》世界空间,多用于顶点着色器 cross(worldNormal, worldTangent)*v.tangent.w 计算副法线,cross(,)两个向量叉积,用于得知两个坐标轴求第三个坐标轴朝向,w控制朝向的正负;知道三个朝向就可以构造变换矩阵了 TANGENT_SPACE_ROTATION 得到从模型空间到顶点空间的变换矩阵rotation,随后可直接进行如下计算,例如: mul(rotation, ObjSpaceLightDir(v.vertex)); 模型空间顶点位置 ==》模型空间光源方向==》顶点空间光源方向 mul(rotation, ObjSpaceViewDir(v.vertex)); 模型空间顶点位置 ==》模型空间视线方向==》顶点空间视线方向 多光源&前向渲染&光照衰减: Tags{"lightmode"="forwardbase"}(第一个Pass,全局性通用计算,只计算一次,不用开启混合) Tags{"lightmode"="forwardadd"}(第二个Pass,根据光源数目不同可能多次计算,需开启混合) 前向渲染的两种标签,分别位于不同的两个Pass,指示每个Pass的光照模式 #pragma multi_compile_fwdbase #pragma multi_compile_fwdadd 前向渲染的两种指令,只有每个Pass配置正确指令才可能得到正确的光照变量,如光照衰减值 UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos.xyz); 用于第二个Pass分别计算每个光源的衰减,atten为输出的衰减值,i为片元着色器的输入结构体,其内部数学运算根据各个光照的类型不同复杂度不一,具体可参考:https://github.com/candycat1992/Unity_Shaders_Book/issues/47 接收投影: SHADOW_COORDS(idx) 声明阴影纹理采样的坐标,用于顶点着色器输出结构体,idx为下一个可用插值寄存器(TEXCOORD)的索引值 TRANSFER_SHADOW(o); 用于在顶点着色器

    01

    【unity shaders】:Unity中的Shader及其基本框架

    Shader(着色器)实际上就是一小段程序,它负责将输入的Mesh(网格)以指定的方式和输入的贴图或者颜色等组合作用,然后输出。绘图单元可以依据这个输出来将图像绘制到屏幕上。输入的贴图或者颜色等,加上对应的Shader,以及对Shader的特定的参数设置,将这些内容(Shader及输入参数)打包存储在一起,得到的就是一个Material(材质)。之后,我们便可以将材质赋予合适的renderer(渲染器)来进行渲染(输出)了。 所以说Shader并没有什么特别神奇的,它只是一段规定好输入(颜色,贴图等)和输出(渲染器能够读懂的点和颜色的对应关系)的程序。而Shader开发者要做的就是根据输入,进行计算变换,产生输出而已。

    02
    领券