首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【C素数】素数(质数)和分解质因数

标记法: 1-4-2方法二:函数法: 2-1基本概念 2-2分解质因数和最大质因数 2-3题目描述 2-4解题思路 2-5代码实现 2-5-1方法:函数递归法: 判断一个数是否是素数 博主今天在复习C...,最小的素数是2 举20以内的素数为例:2, 3,5 , 7,11, 13, 17, 19 1-2.题目描述: 给你一个数,判断他是否是素数?..., 16,,18 , 20 关于素数和合数的概念小趣味知识: 1.1既不是素数又不是合数 2.大于2的素数都是奇数,2是唯一是偶数的素数 3.大于1的整数中,不是素数就是合数 3.最小的素数和合数都是偶数...2-2分解质因数和最大质因数 分解质因数定义:把一个合数用质数相乘的形式表现出来 分解质因数是一个过程,而最大质因数是通过这个过程分解出来的最大的质数 分解质因数的操作方法:短除法 想要了解短处法...速戳分解质因数链接 质数不能分解质因数的原因:质数只能写成1和他本身相乘的形式,而1不是质数, 例如将42分解质因数:42=237 因此最大质因数就是7 除到7后2-sqrt(7)内的数都不能再被整除

95440
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Excel公式练习54: 判断素数,并将不是素数的数分解为素数的乘积

    导语:继续研究来自于excelxor.com的案例。建议结合本文阅读原文,会了解更多的细节,会有更大的收获。...本次的练习是:在列A中给定一个整数值,例如单元格A2,并且2 的值是素数,则返回“素数”;否则,返回该数的素数乘法分解式...图1 素数也称质数,是指在大于1的自然数中,除了1和它本身外不再有其他因数的自然数。 先不看答案,自已动手试一试。...如果规定数字只在单元格A2中,在单元格B2中使用公式判断素数或进行乘数分解的话,那么这个公式就不适用了。...该公式在数字分解式后面会产生一个额外的“x”,此外,对于大于10的数,该公式不会判断为素数,但对于不是素数的数会给出完美的因式分解相乘的式子。

    71310

    Prime Independence 二分图+素数分解

    定义若一个数是另一个数的素数倍就不是独立的。给n个数在该定义下的最大独立集。...最大独立集 = 总数n - 最大不独立匹配 数据大,需要用优化的二分图,对每个数求出素因数,不独立的两个数之间就差一个素因数,若 a 去掉这个素因数得到b 在这n个数中,则建双向边,由于建双向边 ,最大匹配要除...nx, ny; int cnt; int t; int dis; int first[MAXN]; int xlink[MAXN], ylink[MAXN]; /*xlink[i]表示左集合顶点所匹配的右集合顶点序号...,ylink[i]表示右集合i顶点匹配到的左集合顶点序号。...*/ int dx[MAXN], dy[MAXN]; /*dx[i]表示左集合i顶点的距离编号,dy[i]表示右集合i顶点的距离编号*/ int vis[MAXN]; //寻找增广路的标记数组 void

    42230

    Numba向量运算的强大

    Numba向量化运算 喜欢就点关注吧! Hi! 大家好,又和大家见面了。...上次给大家介绍了Numba中一句话加速for循环的@jit加速你的python脚本,今天继续给大家介绍另外一个我觉得很不错的Numba的用法。...For Example 前面给大家介绍过Numba很好用的@jit用法,今天给大家说一说它的另外一个我用到觉得还不错的@vectorize向量化运算。...首先我最开始直接写了个for循环: numba_vectorize_example.py: import math import numba as nb f=0.01 n=10000000 def....py 4.36s user 1.42s system 223% cpu 2.583 total 对于Numba的用法,我也是用的时候才去快速了解了一下它的工具书,目前暂时只用到了这两个装饰器,感觉已经使我的脚本速度大大加快了

    1.2K21

    基于矩阵分解的推荐系统

    本文链接:https://blog.csdn.net/qq_27717921/article/details/78257450 关于矩阵分解 矩阵分解活跃在推荐领域,基于SVD的推荐系统也是矩阵分解的一种...而我们推荐矩阵分解就是希望能通过用户已有的评分来预测用户对未打分或者评价项目的评价情况,而通过矩阵分解则能挖掘用户的潜在因子和项目的潜在因子,来估计缺失值。 ?...矩阵Um,k的行向量表示用户u的k维的潜在因子,表达用户的内部特性,矩阵Vn,k的行向量表示项目i的k维的潜在因子,表示项目的内部特性。利用矩阵U和V可以估计用户u对项目i的评分为: ?...但是一般情况下不一定能非常完美的进行矩阵分解,所以我们可以利用最小化偏差来不断训练参数,这里的参数theta = (U,V); ? ? 为利用矩阵U、V矩阵预测用户u对项目i的打分情况。...如果待分解的矩阵Y非常的稀疏,我们在不断减少平方误差的过程中就很可能会出现的过拟合的现象,为了使训练出来的U、V矩阵更好的拟合现有的数据而导致在缺失上的数据效果不好就可能会造成过拟合现象。

    72210

    基于矩阵分解原理的推荐系统

    原理:矩阵分解 矩阵分解是推荐系统系列中的一种算法,顾名思义,就是将矩阵分解成两个(或多个)矩阵,它们相乘后得到原始矩阵。...在推荐系统中,我们通常从用户与项目之间的交互/评分矩阵开始,矩阵分解算法会将用户和项目特征矩阵分解,这也称为嵌入。下面以电影推荐中的评分,购买等矩阵为例。 ?...在电影推荐系统的示例中,一个用户样本中包含了他所观看的多个电影,潜在特征的值越高,则表示他喜欢该类型的电影,那么就应该推荐此类型的电影。 ?...id_col = 'anime_id', name_col = 'name') 矩阵分解模型...用recsys中的runMF函数来创建矩阵分解模型,这个函数的参数: interaction:前面所创建的矩阵 n_components:对于每个用户和项目嵌入的数量 loss:定义一个损失函数,本例中我们使用

    1.1K10

    实战基于矩阵分解的推荐系统

    问题或建议,请公众号留言或加本人微信; 如果你觉得文章对你有帮助,欢迎加微信交流 基于矩阵分解算法的图书推荐系统实战 推荐系统 推荐系统,可以根据用户的喜好来推荐给用户不同的事物。...矩阵分解: 将推荐值矩阵 R 分解为矩阵 U 和 矩阵 P,使得 U 和 P 的乘积得到的新矩阵 R* 中的元素与 R 中的已知元素的值非常接近,那么 R* 中对应于 R 中的未知元素的值就是预测值。...预测未知数据 关键挑战: 当用户和物品的数量都比较大时,推荐之矩阵通常会是一个稀疏矩阵(在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵为稀疏矩阵),说明大多数用户可能并没有对大多数物品表达喜好...冷启动问题,是每一个推荐系统都需要面对的问题。 矩阵分解实例: ? 即: ? 对比最左侧的元素矩阵和最右侧的预测矩阵,预测矩阵中位于原始矩阵缺失数值位置的元素值,即为预测值。...其中 k 在数学上的意义为矩阵分解的秩,在业务上的意义为 影响用户给物品评分的 k 个影响因子,当前我们无法直接知道 k 的值,在模型训练时,一般采取交叉验证的方式来寻找最优的 k 值。

    91330

    python的numba加速

    但是这一方法中,我们有一个很不现实的要求,就是所有的python代码都要求是python build-in的库来写。...今天,我们使用另外一种jit加速的方法,虽然本质上是一样的,但是其实更加好用,因为支持使用别的库,只要我们把计算瓶颈部分改成使用python的build-in函数来进行计算,毕竟,二八原则,百分之二十的代码支配着百分之八十的速度...: run time:7.714948 s 接下来,我们只加入两行代码,分是是引入numba包,一个是用装饰器修饰我们的计算函数: #-*-coding:utf-8-*- import time import...pandas as pd from numba import jit @jit def time_com(i): cum = 0 for test in range(i):...但是,要注意的是,在jit装饰器装饰的函数中,不可以有第三方的package哦。

    1.2K31

    使用NumPy、Numba的简单使用(一)

    Numpy是python的一个三方库,主要是用于计算的,数组的算数和逻辑运算。与线性代数有关的操作。 很多情况下,我们可以与SciPy和 Matplotlib(绘图库)一起使用。...来替代MatLab,下面我来来看一下numpy库的常见的一些操作。 #!...ndarray 中的每个元素在内存中都有相同存储大小的区域。 ndarray 内部由以下内容组成: 一个指向数据(内存或内存映射文件中的一块数据)的指针。...数据类型或 dtype,描述在数组中的固定大小值的格子。 一个表示数组形状(shape)的元组,表示各维度大小的元组。...创建一个 ndarray 只需调用 NumPy 的 array 函数即可,这里我们要说一个重要的属性,也是容易误解的属性->ndim,秩,即轴的数量或维度的数量,我们只记住他是维度的数量就ok了。

    98541

    使用NumPy、Numba的简单使用(二)

    我们要将M金额的钱换为硬币,保证硬币数目最少,我们的换法是什么,例题二,我们现在有M米的绳子,截成N段(N的长度一定为整数),将N段绳子的长度相乘,保证乘积结果为最大值,我们需要截取,过几天再回头来写这个吧...我们今天来继续说说numpy的用法,这次我们通过习题来看看numpy的用法。   问题:将arr中的所有奇数替换为-1,而不改变arr。...ab的交集 np.intersect1d(a,b)   问题:从数组a中删除数组b中的所有项。...还有:和,还有...并用的。我们来看一个例子,:也就是所有,例如a[:,2]就是我们要取出管他多少行的第三列所有。同事a[2,:]也是如此,第二行的所有,管他多少列呢。...最近搞了一个个人公众号,会每天更新一篇原创博文,java,python,自然语言处理相关的知识有兴趣的小伙伴可以关注一下。

    83051

    推荐算法——基于矩阵分解的推荐算法

    常用的推荐算法主要有: 基于内容的推荐(Content-Based Recommendation) 协同过滤的推荐(Collaborative Filtering Recommendation) 基于关联规则的推荐...(Association Rule-Based Recommendation) 基于效用的推荐(Utility-Based Recommendation) 基于知识的推荐(Knowledge-Based...image.png 二、基于矩阵分解的推荐算法 2.1、矩阵分解的一般形式 image.png 2.2、利用矩阵分解进行预测 image.png 2.2.1、损失函数 image.png 2.2.2、损失函数的求解...image.png 2.2.3、加入正则项的损失函数即求解方法 image.png 2.2.4、预测 image.png 2.3、程序实现 对于上述的评分矩阵,通过矩阵分解的方法对其未打分项进行预测,...(ones((10,5))) ''' result = p * q #print p #print q print result 其中,利用梯度下降法进行矩阵分解的过程中的收敛曲线如下所示

    2K110

    推荐算法——基于矩阵分解的推荐算法

    常用的推荐算法主要有: 基于内容的推荐(Content-Based Recommendation) 协同过滤的推荐(Collaborative Filtering Recommendation) 基于关联规则的推荐...(Association Rule-Based Recommendation) 基于效用的推荐(Utility-Based Recommendation) 基于知识的推荐(Knowledge-Based...在推荐系统中有一类问题是对未打分的商品进行评分的预测。 二、基于矩阵分解的推荐算法 2.1、矩阵分解的一般形式 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积。...可以将其分解成两个或者多个矩阵的乘积,假设分解成两个矩阵Pm×kP_{m\times k}和Qk×nQ_{k\times n},我们要使得矩阵Pm×kP_{m\times k}和Qk×nQ_{k\times...2.2、利用矩阵分解进行预测 在上述的矩阵分解的过程中,将原始的评分矩阵Rm×nR_{m\times n}分解成两个矩阵Pm×kP_{m\times k}和Qk×nQ_{k\times n}的乘积: Rm

    1.8K30

    NLP面试-基于矩阵分解的推荐算法(转载)

    下面一组基本的数据:用户-物品的评分矩阵,如下图所示: ? image 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积。对于上述的用户-商品矩阵(评分矩阵),记为Rm×n。...可以将其分解成两个或者多个矩阵的乘积,假设分解成两个矩阵Pm×k和Qk×n,我们要使得矩阵Pm×k和Qk×n的乘积能够还原原始的矩阵Rm×n: ?...2 相关理论 2.1 损失函数 可以使用原始的评分矩阵Rm×n与重新构建的评分矩阵R^m×n之间的误差的平方作为损失函数,即: ? 损失函数 最终,需要求解所有的非“-”项的损失之和的最小值: ?...result = p * q #print p #print q print result 4 参考资料 机器学习/自然语言处理方向面试 - CSDN博客 荐算法——基于矩阵分解的推荐算法...- CSDN博客 机器学习(5) 推荐 矩阵分解(Matrix Factorization) - CSDN博客 矩阵分解在协同过滤推荐算法中的应用 - 刘建平Pinard - 博客园 基于矩阵分解的推荐算法

    71710

    基于分解和重组的分子图的生成方法

    在这里,作者提出了一种全新的基于分解和重组的方法,该方法不包括任何在隐藏空间中的优化,并且生成过程具有高度的可解释性。...搜索理想分子的另一种策略是基于强化学习。在强化学习的设置下,智能体学习最优策略以最大化累积奖励,并且经过训练的智能体可以采取行动生成最优的分子。...在 gSpan 中,每个图形都以 DFS(深度优先搜索)编码表示,该编码基于字典序构建搜索树,并能够有效检查已枚举图形的重复性。...可以看出,基于连接树的枚举速度比直接将gSpan应用于分子图要快得多。这个结果意味着基于连接树的枚举在实际的ZINC数据库中是有效的。...结论 作者提出了一种名为MOLDR的新型分子生成方法,它将图结构进行分解和重组。

    30410

    基于奇异值分解(SVD)的图片压缩实践

    SVD概念可以参考:《统计学习方法》–奇异值分解(Singular Value Decomposition,SVD) 2....原理简介 彩色图片有3个图层,RGB(红、绿、蓝)也就是矩阵的一个位置上存储了3个基色的数值,由3个基色混合成不同的色彩。...通过对3个图层矩阵,分别进行SVD近似,SVD奇异值是唯一的,可以取前 k 个最大的奇异值进行近似表达,最后再将3个图层的矩阵数据合并,用较少的数据去表达图片。...≥σp​≥0p=min(m,n) UΣVTU \Sigma V^TUΣVT 称为矩阵 AAA 的奇异值分解(SVD),UUU 是 mmm 阶正交矩阵, VVV 是 nnn 阶正交矩阵,Σ\SigmaΣ...Sigma对角矩阵 zip_img[:, :, chanel] = u[:, 0:sigma_i].dot(SigmaMat).dot(v[0:sigma_i, :]) # 将分解得到的

    2.4K41

    numba,让你的Python飞起来!

    办法永远比困难多,numba就是解决python慢的一大利器,可以让python的运行速度提升上百倍! 1 什么是numba?...numba是一款可以将python函数编译为机器代码的JIT编译器,经过numba编译的python代码(仅限数组运算),其运行速度可以接近C或FORTRAN语言。 ?...python之所以慢,是因为它是靠CPython编译的,numba的作用是给python换一种编译器。 ?...python、c、numba三种编译器速度对比 使用numba非常简单,只需要将numba装饰器应用到python函数中,无需改动原本的python代码,numba会自动完成剩余的工作。...2 numba适合科学计算 numpy是为面向numpy数组的计算任务而设计的。 在面向数组的计算任务中,数据并行性对于像GPU这样的加速器是很自然的。

    1.3K41

    numba,让你的Python飞起来!

    办法永远比困难多,numba就是解决python慢的一大利器,可以让python的运行速度提升上百倍! 1 什么是numba?...numba是一款可以将python函数编译为机器代码的JIT编译器,经过numba编译的python代码(仅限数组运算),其运行速度可以接近C或FORTRAN语言。...python之所以慢,是因为它是靠CPython编译的,numba的作用是给python换一种编译器。...python、c、numba三种编译器速度对比 使用numba非常简单,只需要将numba装饰器应用到python函数中,无需改动原本的python代码,numba会自动完成剩余的工作。...2 numba适合科学计算 numpy是为面向numpy数组的计算任务而设计的。 在面向数组的计算任务中,数据并行性对于像GPU这样的加速器是很自然的。

    1.1K20

    基于分解的结构化多元时间序列建模

    今天介绍一篇本周最新发表的多元时间序列预测模型SCNN。这篇文章的核心是,利用因素分解的思路将多元时间序列预测问题模块化,并得益于分解和模块化建模方法,实现多元时间序列预测的可解释性建模。...and Interpretable Multivariate Time Series Forecasting 下载地址:https://arxiv.org/pdf/2305.13036.pdf 1、基于分解的建模思路...时间序列预测中,基于分解的建模思路很常用,一般将时间序列分解成趋势项、季节项等因素,对每个因素独立建模,相比直接对复杂的混合序列建模更加容易。...本文的核心思路也是分解,将多元时间序列分解成长周期项、短周期项目、季节项、序列间相关性项等4个因素分别建模。...2、主体模型结构 基于上述4个分解模块,模型的主体结构如下图,包括Encoder和Decodeer两个部分。

    44060
    领券