首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

独家 | 一文读懂PySpark数据框(附实例)

它是多行结构,每一行又包含了多个观察项。同一行可以包含多种类型的数据格式(异质性),而同一列只能是同种类型的数据(同质性)。数据框通常除了数据本身还包含定义数据的元数据;比如,列和行的名字。...这个方法会提供我们指定列的统计概要信息,如果没有指定列名,它会提供这个数据框对象的统计信息。 5. 查询多列 如果我们要从数据框中查询多个指定列,我们可以用select方法。 6....过滤数据(多参数) 我们可以基于多个条件(AND或OR语法)筛选我们的数据: 9. 数据排序 (OrderBy) 我们使用OrderBy方法排序数据。...PySpark数据框实例2:超级英雄数据集 1. 加载数据 这里我们将用与上一个例子同样的方法加载数据: 2. 筛选数据 3. 分组数据 GroupBy 被用于基于指定列的数据框的分组。...这里,我们将要基于Race列对数据框进行分组,然后计算各分组的行数(使用count方法),如此我们可以找出某个特定种族的记录数。 4.

6K10

PySpark SQL——SQL和pd.DataFrame的结合体

注:由于Spark是基于scala语言实现,所以PySpark在变量和函数命名中也普遍采用驼峰命名法(首单词小写,后面单次首字母大写,例如someFunction),而非Python中的蛇形命名(各单词均小写...:这是PySpark SQL之所以能够实现SQL中的大部分功能的重要原因之一,functions子类提供了几乎SQL中所有的函数,包括数值计算、聚合统计、字符串以及时间函数等4大类,后续将专门予以介绍...*"提取所有列,以及对单列进行简单的运算和变换,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过df.age+1构造了名字为(age...SQL中实现条件过滤的关键字是where,在聚合后的条件中则是having,而这在sql DataFrame中也有类似用法,其中filter和where二者功能是一致的:均可实现指定条件过滤。...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选

10K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用Spark学习矩阵分解推荐算法

    在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法。 1....Spark推荐算法概述     在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法。...将数据解压后,我们只使用其中的u.data文件中的评分数据。这个数据集每行有4列,分别对应用户ID,物品ID,评分和时间戳。由于我的机器比较破,在下面的例子中,我只使用了前100条数据。...: u'196\t242\t3\t881250949'     可以看到数据是用\t分开的,我们需要将每行的字符串划开,成为数组,并只取前三列,不要时间戳那一列。...RDD,但是这些数据都还是字符串,Spark需要的是若干Rating类对应的数组。

    1.5K30

    PySpark UD(A)F 的高效使用

    执行查询后,过滤条件将在 Java 中的分布式 DataFrame 上进行评估,无需对 Python 进行任何回调!...利用to_json函数将所有具有复杂数据类型的列转换为JSON字符串。因为Arrow可以轻松处理字符串,所以可以使用pandas_udf装饰器。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...不同之处在于,对于实际的UDF,需要知道要将哪些列转换为复杂类型,因为希望避免探测每个包含字符串的列。在向JSON的转换中,如前所述添加root节点。

    19.7K31

    Spark Extracting,transforming,selecting features

    假设我们有下面这个DataFrame,两列为id和texts: id texts 0 Array("a", "b", "c") 1 Array("a", "b", "b", "c", "a") texts中的每一行都是一个元素为字符串的数组表示的文档...the, red, baloon] 1 [Mary, had, a, little, lamb] 对raw列应用StopWordsRemover可以得到过滤后的列: id raw filtered 0...,实际就是将字符串与数字进行一一对应,不过这个的对应关系是字符串频率越高,对应数字越小,因此出现最多的将被映射为0,对于未见过的字符串标签,如果用户选择保留,那么它们将会被放入数字标签中,如果输入标签是数值型...,它可以同时自动判断那些特征是类别型,并将其映射到类别索引上,如下: 接收类型为Vector的列,设置参数maxCategories; 基于列的唯一值数量判断哪些列需要进行类别索引化,最多有maxCategories...,类似R中的公式用于线性回归一样,字符串输入列会被one-hot编码,数值型列会被强转为双精度浮点,如果标签列是字符串,那么会首先被StringIndexer转为double,如果DataFrame中不存在标签列

    21.9K41

    大数据开发!Pandas转spark无痛指南!⛵

    中可以指定要分区的列:df.partitionBy("department","state").write.mode('overwrite').csv(path, sep=';')注意 ②可以通过上面所有代码行中的...条件选择 PandasPandas 中根据特定条件过滤数据/选择数据的语法如下:# First methodflt = (df['salary'] >= 90_000) & (df['state'] =...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...我们经常要进行数据变换,最常见的是要对「字段/列」应用特定转换,在Pandas中我们可以轻松基于apply函数完成,但在PySpark 中我们可以使用udf(用户定义的函数)封装我们需要完成的变换的Python...另外,大家还是要基于场景进行合适的工具选择:在处理大型数据集时,使用 PySpark 可以为您提供很大的优势,因为它允许并行计算。 如果您正在使用的数据集很小,那么使用Pandas会很快和灵活。

    8.2K72

    MLlib

    Spark MLlib 简介 MapReduce对机器学习的算法编写的缺点: 反复读写磁盘 磁盘IO开销大 机器学习算法中具有大量的迭代计算,导致了MapReduce不太适合。...Spark是基于内存的计算框架,使得数据尽量不存放在磁盘上,直接在内存上进行数据的操作。 MLlib只包含能够在集群上运行良好的并行算法。...特征化工具 特征提取 转化 降维 选择工具 实现算法 MLlib实现的算法包含: 分类 回归 聚类 协同过滤 流水线 使用Spark SQL中的DF作为数据集,可以容纳各种数据类型。...DF中的列可以是: 文本 特征向量 真实和预测标签等 转换器transformer能将一个DF转换成另一个DF,增加一个标签列。...评估器estimator指的是学习算法或在训练数据上的训练方法的抽象概念,本质上就是一个算法。 参数parameter用来进行参数的设置。

    71010

    C语言经典100例002-将M行N列的二维数组中的字符数据,按列的顺序依次放到一个字符串中

    喜欢的同学记得点赞、转发、收藏哦~ 后续C语言经典100例将会以pdf和代码的形式发放到公众号 欢迎关注:计算广告生态 即时查收 1 题目 编写函数fun() 函数功能:将M行N列的二维数组中的字符数据...,按列的顺序依次放到一个字符串中 例如: 二维数组中的数据为: W W W W S S S S H H H H 则字符串中的内容是:WSHWSHWSH [image.png] 2 思路 第一层循环按照列数进行...,第二层循环按照行数 然后依次提出每一列的字符 3 代码 为了熟悉二维数组的指针表示,部分代码给出了数组表示和指针表示 #include #include #define...M 3 #define N 4 /** 编写函数fun() 函数功能:将M行N列的二维数组中的字符数据,按列的顺序依次放到一个字符串中 例如: 二维数组中的数据为: W W W W S S S...S H H H H 则字符串中的内容是:WSHWSHWSH **/ // 0 1 2 3 // 0 W W W W // 1 S S S S // 2 H H H H char *fun(char

    6.1K30

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...df['age']>21) 多个条件jdbcDF .filter(“id = 1 or c1 = ‘b’” ).show() #####对null或nan数据进行过滤: from pyspark.sql.functions...,然后生成多行,这时可以使用explode方法   下面代码中,根据c3字段中的空格将字段内容进行分割,分割的内容存储在新的字段c3_中,如下所示 jdbcDF.explode( "c3" , "c3...DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark DataFrame有更多方便的操作以及很强大 转化为RDD 与Spark RDD的相互转换: rdd_df

    30.5K10

    PySpark 数据类型定义 StructType & StructField

    PySpark StructType 和 StructField 类用于以编程方式指定 DataFrame 的schema并创建复杂的列,如嵌套结构、数组和映射列。...使用 StructField 我们还可以添加嵌套结构模式、用于数组的 ArrayType 和用于键值对的 MapType ,我们将在后面的部分中详细讨论。...在下面的示例列中,“name” 数据类型是嵌套的 StructType。...在下面的示例中,列hobbies定义为 ArrayType(StringType) ,列properties定义为 MapType(StringType, StringType),表示键和值都为字符串。...如果要对DataFrame的元数据进行一些检查,例如,DataFrame中是否存在列或字段或列的数据类型;我们可以使用 SQL StructType 和 StructField 上的几个函数轻松地做到这一点

    1.3K30

    盘点8个数据分析相关的Python库(实例+代码)

    n行m列 ndarray.size:数组元素的总个数,相当于.shape中n×m的值 ndarray.dtype:ndarray对象的元素类型 ndarray.itemsize:ndarray对象中每个元素的大小...通过PySpark调用Spark的API,配合MLlib与ML库,可以轻松进行分布式数据挖掘。 MLlib库是Spark传统的机器学习库,目前支持4种常见的机器学习问题:分类、回归、聚类和协同过滤。...MLlib的所有算法皆基于Spark特有的RDD(Resilient Distributed Dataset,弹性分布式数据集)数据结构进行运算。...ML库相较MLlib库更新,它全面采用基于数据帧(Data Frame)的API进行操作,能够提供更为全面的机器学习算法,且支持静态类型分析,可以在编程过程中及时发现错误,而不需要等代码运行。...Python中除了包含上面介绍的库,还有其他一些常用库。下面分别进行介绍。 04 SciPy SciPy是一个开源算法库和数学工具包,它基于NumPy构建,并扩展了NumPy的功能。

    2.6K20

    Spark MLlib

    为此,Spark提供了一个基于海量数据的机器学习库,它提供了常用机器学习算法的分布式实现,对于开发者而言,只需要具有Spark编程基础,并且了解机器学习算法的基本原理和方法中相关参数的含义,就可以轻松地通过调用相应的...例如,DataFrame中的列可以是存储的文本、特征向量、真实标签和预测的标签等。 Transformer:翻译成转换器,是一种可以将一个DataFrame转换为另一个DataFrame的算法。...技术上,Transformer实现了一个方法transform(),它通过附加一个或多个列将一个DataFrame转换为另一个DataFrame。...流水线将多个工作流阶段(转换器和估计器)连接在一起,形成机器学习的工作流,并获得结果输出。...在机器学习处理过程中,为了方便相关算法的实现,经常需要把标签数据(一般是字符串)转化成整数索引,或是在计算结束后将整数索引还原为相应的标签。

    7100

    别说你会用Pandas

    这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。但Numpy不适合做数据处理和探索,缺少一些现成的数据处理函数。...chunk 写入不同的文件,或者对 chunk 进行某种计算并保存结果 但使用分块读取时也要注意,不要在循环内部进行大量计算或内存密集型的操作,否则可能会消耗过多的内存或降低性能。...,这可能会将所有数据加载到单个节点的内存中,因此对于非常大的数据集可能不可行)。...PySpark处理大数据的好处是它是一个分布式计算机系统,可以将数据和计算分布到多个节点上,能突破你的单机内存限制。.../data.csv", header=True, inferSchema=True) # 显示数据集的前几行 df.show(5) # 对数据进行一些转换 # 例如,我们可以选择某些列

    12910

    PySpark数据计算

    在 PySpark 中,所有的数据计算都是基于 RDD(弹性分布式数据集)对象进行的。RDD 提供了丰富的成员方法(算子)来执行各种数据处理操作。...【拓展】链式调用:在编程中将多个方法或函数的调用串联在一起的方式。在 PySpark 中,链式调用非常常见,通常用于对 RDD 进行一系列变换或操作。...通过链式调用,开发者可以在一条语句中连续执行多个操作,不需要将每个操作的结果存储在一个中间变量中,从而提高代码的简洁性和可读性。...四、filter算子定义:filter算子根据给定的布尔函数过滤RDD中的元素,返回一个只包含满足条件的元素的新RDD。...如果返回 True,则该元素会被保留在新 RDD 中如果返回 False,则该元素会被过滤掉from pyspark import SparkConf, SparkContextimport osos.environ

    14910

    浅谈pandas,pyspark 的大数据ETL实践经验

    ---- 0.序言 本文主要以基于AWS 搭建的EMR spark 托管集群,使用pandas pyspark 对合作单位的业务数据进行ETL ---- EXTRACT(抽取)、TRANSFORM(转换...2.3 pyspark dataframe 新增一列并赋值 http://spark.apache.org/docs/latest/api/python/pyspark.sql.html?...缺失值的处理 pandas pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。...和pandas 都提供了类似sql 中的groupby 以及distinct 等操作的api,使用起来也大同小异,下面是对一些样本数据按照姓名,性别进行聚合操作的代码实例 pyspark sdf.groupBy

    5.5K30

    Spark SQL实战(04)-API编程之DataFrame

    Spark的DataFrame是基于RDD(弹性分布式数据集)的一种高级抽象,类似关系型数据库的表格。...Spark DataFrame可看作带有模式(Schema)的RDD,而Schema则是由结构化数据类型(如字符串、整型、浮点型等)和字段名组成。...而R语言的生态系统也有一些类似的库和工具,但相对来说可选择性就更少一些。 总之,选择使用哪种工具进行数据分析应该基于具体情况进行考虑。...API中的一个方法,可以返回一个包含前n行数据的数组。...通过调用该实例的方法,可以将各种Scala数据类型(如case class、元组等)与Spark SQL中的数据类型(如Row、DataFrame、Dataset等)之间进行转换,从而方便地进行数据操作和查询

    4.2K20

    利用PySpark 数据预处理(特征化)实战

    模型 这次实际情况是,我手头已经有个现成的模型,基于TF开发,并且算法工程师也提供了一些表给我,有用户信息表,用户行为表。行为表已经关联了内容的文本。...把数据喂给模型,进行训练 思路整理 四个向量又分成两个部分: 用户向量部分 内容向量部分 用户向量部分由2部分组成: 根据几个用户的基础属性,他们有数值也有字符串,我们需要将他们分别表示成二进制后拼接成一个数组...第一个是pyspark的套路,import SDL的一些组件,构建一个spark session: # -*- coding: UTF-8 -*- from pyspark.sql import SparkSession...# 基础信息中字符串字段需要转化为数字 binary_columns = [item + "_binary" for item in person_basic_properties_group] binary_trans...最后返回df的时候,过滤掉去胳膊少腿的行。

    1.7K30
    领券