首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python基于值的内存管理真相

    Python采用基于值的内存管理方式,如果为不同变量赋值为相同值,这个值在内存中只保存一份,多个变量指向同一个值的内存空间首地址,这样可以减少内存空间的占用,提高内存利用率。...Python启动时,会对[-5, 256]区间的整数进行缓存。也就是说,如果多个变量的值相等且介于[-5, 256]区间内,那么这些变量共用同一个值的内存空间。...对于区间[-5, 256]区间之外的整数,同一个程序中或交互模式下同一个语句中的同值不同名变量会共用同一个内存空间,不同程序或交互模式下不同语句不遵守这个约定。例如: ?...Python不会对实数进行缓存,交互模式下同值不同名的变量不共用同一个内存空间,同一个程序中的同值不同名变量会共用同一个内存空间。短字符串会共同一个内存空间,而长字符串不遵守这个约定。

    3K40

    基于随机森林方法的缺失值填充

    本文中主要是利用sklearn中自带的波士顿房价数据,通过不同的缺失值填充方式,包含均值填充、0值填充、随机森林的填充,来比较各种填充方法的效果 ?...缺失值 现实中收集到的数据大部分时候都不是完整,会存在缺失值。...ytrain 特征T不缺失的值 Xtest 特征T缺失的值对应的n-1个特征+原始标签 ytest 特征T缺失值(未知) 如果其他特征也存在缺失值,遍历所有的特征,从缺失值最少的开始。...缺失值越少,所需要的准确信息也越少 填补一个特征,先将其他特征值的缺失值用0代替,这样每次循环一次,有缺失值的特征便会减少一个 图形解释 假设数据有n个特征,m行数据 ?...由于是从最少的缺失值特征开始填充,那么需要找出存在缺失值的索引的顺序:argsort函数的使用 X_missing_reg = X_missing.copy() # 找出缺失值从小到大对应的索引值

    7.2K31

    算法的权值-基于局部权值阈值调整的BP 算法的研究.docx

    基于局部权值阈值调整的BP 算法的研究.docx基于局部权值阈值调整的BP算法的研究刘彩红'(西安工业大学北方信息工程学院,两安)摘要:(目的)本文针对BP算法收敛速度慢的问题,提出一种基于局部权值阈值调桀的...(方法)该算法结合生物神经元学与记忆形成的特点,针对特定的训练样本,只激发网络中的部分神经元以产生相应的输岀,而未被激发的神经元产生的输出则与目标输岀相差较大算法的权值,那么我们就需要对未被激发的神经元权值阈值进行调整...所以本论文提出的算法是对局部神经元权值阈值的调整,而不是传统的BP算法需要对所有神经元权值阈值进行调一整,(结果)通过实验表明这样有助于加快网络的学速度。...但以往大多改进算法,在误差的反向传播阶段也就是训练的第二阶段,是对所有神经元的权值阈值都进行修改的。针対不同的输入,神经网络激发不同的神经元,所以可以在训练的第二阶段修改部分神经元的权值阈值。...2基于局部权值阈值调整算法的改进思想本文提出的算法结合生物神经元学与记忆形成的特点⑸,针对特定的训练样本,只激发网络中的部分神经元以产生相应的输出,而未被激发的神经元产生的输出则与目标输出相差较大,那么我们就需要対未被激发的神经元的权值阈值进行调整

    39320

    基于FPGA的二值图像的膨胀算法的实现

    基于FPGA的二值图像的膨胀算法的实现 1 背景知识 二值图像(Binary Image)是指将图像上的每一个像素只有两种可能的取值或灰度等级状态,人们经常用黑白、B&W、单色图像表示二值图像。...二值图像是指在图像中,灰度等级只有两种,也就是说,图像中的任何像素不是0就是1,再无其他过渡的灰度值。...膨胀与腐蚀是形态学滤波的两个基本运算,能实现多种多样的功能,主要功能如下: (1)消除噪声; (2)分割出独立的图像元素; (3)在图像中连接相邻的元素; (4)寻找图像中明显的极大值和极小值区域; (...只有(x,y)点以及相邻的八个点都是‘1’f(x,y)的值才是‘1’。这样就完成了二值图像的膨胀。 3 FPGA膨胀算法实现 ?...RGB图像->sobel算子边缘检测->二值图像的腐蚀->二值图像的膨胀。

    94320

    基于FPGA的二值图像的腐蚀算法的实现

    基于FPGA的二值图像的腐蚀算法的实现 九层之台,起于累土 1 背景知识 腐蚀和膨胀是形态学处理的基础,许多形态学算法都是以这两种操作作为基础的。 ?...图1 使用腐蚀去除图像中的部件 图1 a一幅大小为486x486的连线模板二值图像,图1b~d分别使用11x11,15X15和45X45的模板进行腐蚀。...我们从这个例子看到,腐蚀缩小或细化了二值图像中的物体。事实上,我们可以将腐蚀看成是形态学滤波操作,这种操作将小于模板的图像细节从图像中滤除。 2 腐蚀算法 使用白色腐蚀: ?...图2 腐蚀演示 在二值图像的腐蚀算法过程中我们使用二值图像3x3图像矩阵,由图2可知,当九个格子中不全为‘0’或者‘1’时,经过腐蚀算法后九个格子的值最终都会变成‘1’;如果九个全是‘1’或者‘0’时,...图3 二值图像腐蚀FPGA模块架构 图3中我们使用串口传图,传入的是二值图像。

    1.2K30

    基于奇异值分解(SVD)的图片压缩实践

    通过对3个图层矩阵,分别进行SVD近似,SVD奇异值是唯一的,可以取前 k 个最大的奇异值进行近似表达,最后再将3个图层的矩阵数据合并,用较少的数据去表达图片。...是 m×nm \times nm×n 的对角矩阵 σi\sigma_iσi​ 称为矩阵 AAA 的奇异值 UUU 的列向量,左奇异向量 VVV 的列向量,右奇异向量 ?...numpy svd函数 sigma_i = 0 temp = 0 while (temp / np.sum(sigma)) 的奇异值和需要达到设定的权重...:%d" % (zip_rate, sigma_i)) print("设置的压缩率:", rate) print("使用的奇异值数量:", sigma_i) print("原始图片大小...可以看出在使用128个奇异值的SVD压缩情况下,就可以得到跟原图差不多效果的图片 原图是703x800的尺寸,SVD使用的矩阵 ((703, 128)+(128, 128)+(128, 800))=208768

    2.4K41

    基于积分图的二值图像膨胀算法实现

    随后这种技术被应用到基于NCC的快速匹配、对象检测和SURF变换中、基于统计学的快速滤波器等方面。...膨胀介绍 膨胀操作是图像形态学两个最基本的操作之一,另外一个是腐蚀。主要应用在二值图像和灰度图像分析上,膨胀操作可以适当的根据结构元素的大小来扩张图像前景对象。对二值图像来说,看上去像似边缘增长一样。...基于积分图的形态学膨胀算法步骤 根据输入二值图像建立积分图 使用积分图索引查找结构元素重叠区块的像素总和,如果不为0 而且总和不等于窗口大小X255,则中心像素设为255 ,即膨胀 重复第二步实现对每个像素点做相同计算...从上面可以看出,基于积分图的方式,随着结构元素的变大,计算时间趋于一个常量时间值-C,而基于传统方式随着结构元素变大,时间消耗成几何级数增加。...充分证明了基于积分图方式二值膨胀操作是一种高效时间线性化的算法实现。

    1.8K81

    基于FPGA的二值图像的边界提取算法的实现

    基于FPGA的二值图像的边界提取算法的实现 1 背景知识 二值图像(Binary Image)是指将图像上的每一个像素只有两种可能的取值或灰度等级状态,人们经常用黑白、B&W、单色图像表示二值图像。...二值图像是指在图像中,灰度等级只有两种,也就是说,图像中的任何像素不是0就是1,再无其他过渡的灰度值。 二值图像的边界提取主要基于黑白区域的边界查找。和许多边界查找算法相比它适合于二值图像。 ?...图1 二值图像边界提取演示 如图1 所示,图1 a为一幅简单的二值图像,经过边界提取后形成如图1 b 所示的图像,显示出了白色区域的轮廓。...3 FPGA二值图像边界提取算法实现 ? 图3二值图像膨胀FPGA模块架构 图3中我们使用串口传图传入的是二值图像。...推荐阅读: 《基于FPGA的二值图像的腐蚀算法的实现》 《基于FPGA的二值图像的膨胀算法的实现》

    1K10

    数据清洗 Chapter08 | 基于模型的缺失值填补

    基于模型的方法会将含有缺失值的变量作为预测目标 将数据集中其他变量或其子集作为输入变量,通过变量的非缺失值构造训练集,训练分类或回归模型 使用构建的模型来预测相应变量的缺失值 一、线性回归 是一种数据科学领域的经典学习算法...含有缺失值的属性作为因变量 其余的属性作为多维的自变量 建立二者之间的线性映射关系 求解映射函数的次数 2、在训练线性回归模型的过程中 数据集中的完整数据记录作为训练集,输入线性回归模型 含有缺失值的数据记录作为测试集...,缺失值就是待预测的因变量 这样,一个缺失值填补的问题就成为一个经典的回归预测问题 含缺失值的属性是目标属性,运用线性回归进行填补,顺理成章 如果自变量存在缺失值,运用线性回归算法进行填补 但是,增大属性之间的相关性...2、使用KNN算法进行缺失值填补 当预测某个样本的缺失属性时,KNN会先去寻找与该样本最相似的K个样本 通过观察近邻样本的相关属性取值,来最终确定样本的缺失属性值 数据集的实例s存在缺失值...,根据无缺失的属性信息,寻找K个与s最相似的实例 依据属性在缺失值所在字段下取值,来预测s的缺失值 3、数据集介绍 对青少年数据集的缺失值属性gender进行填补 学生的兴趣对其性别具有较好的指示作用

    1.5K10

    【深度学习测颜值】基于TensorFlow的开源项目FaceRank

    【新智元导读】 用深度学习来评判颜值,已开源。好友 @小灰灰 大大的「颜值评分 FaceRank」,这是基于 TensorFlow 的 CNN 模型,美不美机器说了算。...我们常看到用机器学习识别字体,自动驾驶等项目,今天给大家推荐一个有趣的项目 FaceRank,这是个开源项目,它基于 TensorFlow CNN 模型,提供了一些图片处理的工具集,后续还会提供训练好的模型...从此以后,让它来帮你寻找高颜值的小电影,帮你筛选附近高颜值的妹子(汉子),让它帮你给学校或者公司帅哥美女做个排行榜,让它给明星打分并且你可以自豪的说「一切都是人工智能的选择」。。。...find_faces_in_picture.py find_and_save_face 基于 face_recognition 从图片中找到人脸的坐标,并保存为新图片。 ? ?...模型 人脸打分基于 TensorFlow 的 CNN 模型 代码参考 : TensorFlow-Examples 卷积神经网络部分代码,网络结构说明: 卷积层 池化层 卷积层 池化层 全链接层 ?

    1.6K40

    python 基于熵值法进行综合评价

    客观赋权法是从实际数据出发,利用指标值所反应的客观信息确定权重的一种方法,如熵值法、银子分析法、主成分分析、均方差法、相关系数法等。本文主要介绍熵值法进行综合评价,并使用Python进行实现。...通过这种测算方法,衍生出一种数学计算方法即熵值法,用以计算某些指标所反映出的权重,用来确定某些指标的离散性,从而对多种的指标数据进行综合性的评定和分析,进而确定其最具影响力的指标因素,为决策提供一定的参考依据...熵值最早由申农(Shannon)将其引入信息论计算,信息是系统对有序数据的衡定,熵值是对不确定指标或无序指标的衡定,两者在结果互为相反数。...由此,可以通过信息和熵的计算和分析得出,熵与信息的无序性构成正比例关系,和权重值构成成反比例关系。利用权重指标的变异程度的特性,可以计算并确定其指标权重的大小,从而能对研宄对象开展比较客观的评价。...上式中,yij代表无量纲化后数据,经过无量纲化的数据都落到了[0,1]区间,yij值越大,说明评价结果越高。

    2.1K60

    基于Pytorch构建三值化网络TWN

    因此,TWN中的乘法累加操作次数和二值化网络相比保持不变。 3. 三值化网络的原理 3.1 问题引入 首先,论文认为权值的分布接近于一个正态分布和一个均匀分布的组合。...然后,论文提出使用一个scale参数去最小化三值化前的权值和三值化之后的权值的L2距离。 参数三值化的公式如下: ?...这篇论文最核心的部分就是阈值和scale参数alpha的推导过程。 在参数三值化后,论文使用了一个scale参数(用表示)让三值化后的参数更接近三值化之前的参数,具体如下: ?...评估三值化后的参数和三值化之前的参数的差距 其中,表示卷积核的数量,权重估计。 然后,三值网络的前向传播过程如下: ?...3.2 基于阈值的三值函数近似解 现在我们的目标是求解等式(1),然后我们容易知道上面的等式不仅仅和有关,还和有关,而是根据等式三来控制的,即: ?

    75021

    遥感影像线性插值(基于GEE平台)

    线性插值填补空缺值 遥感影像中总是由于各种各样的原因会出现空缺值,包括云污染、传感器损坏呀之类的。...最简单的方法当然还是利用线性插值的方法进行插补啦,就是利用缺失影像前后日期的数据进行线性插值,之后对缺失影像进行填补。今天我们就用GEE简单的实现一下这个方法。...timeImage.updateMask(image.mask().select(0)) return image.addBands(timeImageMasked) }) 对影像进行匹配 这只进行插值的核心步骤...,我们对每个影像匹配其前几天的影像数据与后几天的影像数据,这个间隔天数可以自主设置。...插值公式 y = y1 + (y2-y1)*((t – t1) / (t2 – t1)) y = 需要插值的数据 y1 = 目标之前数据,>y2 = 目标之前数据 t 其所对应的时间信息 var interpolateImages

    1.8K21

    基于图像分类的动态图像增强

    最后,我们提出了一个包含一系列增强滤波器的标准CNN结构,通过端到端的动态滤波器学习来增强图像的特定细节。...(Y),k \in K\),由于有些基于学习的增强得到的结果不如原始图像,因此我们引入一个恒等滤波器(K+1)来产生原始图像,并比较了两种不同的权重(1)设置相同的权值\(1/K\);(2)根据MSE给出权重...多动态滤波器分类 整体的网络结构如图4: ?...增强后的图像误差最小则权值最大,反之亦然。同时,我们也比较了相同权值的情况,然后发现基于MSE的权值能得到更好的结果。与方法2类似,这边也将原始图像卷积上一个恒等滤波器(K+1),权值为1。...权值设置 经过实验发现,基于MSE的权重设置比相同权值能取得更好的结果,最终的权重如下: ? 对比结果如下: ?

    1.5K30

    学界 | BMXNet:基于MXNet的开源二值神经网络实现

    BMXNet 是一个开源的基于 MXNet 的二值神经网络库(BNN library),支持 XNOR-Network 和 Qantized Neural Networks。...BMXNet 项目地址:https://github.com/hpi-xnor/BMXNet 图 1:GEMM 方法处理时间对比 图 2:通过不同的卷积层过滤数量基于朴素 GEMM 方法的加速比。...图 3:通过不同的卷积层的 kernel 大小基于朴素 GEMM 方法的加速比。输入信道大小设定为 256,batch 大小和过滤数量分别为 200 和 64。...表 1:在 MNIST 和 CIFAR-10 数据集上训练的二值和全精度模型的分类准确率。未使用任何预训练或数据增强。...表 2:在 ImageNet 数据集上训练的二值网络、部分二值化网络、全精度模型的分类准确率。实验中使用的是 ResNet-18 架构。 本文为机器之心编译,转载请联系本公众号获得授权。

    84350

    【Python】基于某些列删除数据框中的重复值

    keep:对重复值的处理方式,可选{'first', 'last', 'False'}。默认值first,即保留重复数据第一条。...二、加载数据 加载有重复值的数据,并展示数据。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    20.5K31
    领券