(2) 矩阵乘法 假定有两个矩阵A和B,若A为m*n矩阵,B为n*p矩阵,则C=A*B为m*p矩阵。 (3) 矩阵除法 在MATLAB中,有两种矩阵除法运算:\和/,分别表示左除和右除。...四、矩阵分析 1、对角阵 (1) 对角阵 只有对角线上有非0元素的矩阵称为对角矩阵,对角线上的元素相等的对角矩阵称为数量矩阵,对角线上的元素都为1的对角矩阵称为单位矩阵。...(4) 稀疏带状矩阵的创建 S=spdiags(B,d,m,n) 其中m 和n 分别是矩阵的行数和列数;d是长度为p的整数向量,它指定矩阵S的对角线位置;B是全元素矩阵,用来给定S对角线位置上的元素,行数为...二、有限域中的矩阵 信道编码中的矩阵运算一般都是基于有限域的,因此需要将普通矩阵转换为有限域中的矩阵,使其运算在有限域GF(m)中。...可以通过命令gf(data,m)将数据限制在有限域中,这样如矩阵求逆、相加、相乘等运算就均是基于有限域GF(m)的运算了。 那么如何将有限域元素转换为double型的呢?
题目 给你两个 稀疏矩阵 A 和 B,请你返回 AB 的结果。 你可以默认 A 的列数等于 B 的行数。 请仔细阅读下面的示例。...*B[k][j]; ans[i][j] = sum; } return ans; } }; 24 ms 8.4 MB 2.2 选取都不为0的行和列相乘
一、问题描述: 稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储(只存储非零元)和计算可以大大节省存储空间,提高计算效率。实现一个能进行稀疏矩阵基本运算的运算器。...二、需求分析: 以“带行逻辑链接信息”的三元组顺序表表示稀疏矩阵,实现两个矩阵相加、相减和相乘的运算。稀疏矩阵的输入形式采用三元组表示,而运算结果的矩阵则以通常的阵列形式列出。...稀疏矩阵的输出要求:矩阵的行数、列数、非零元个数,以及详细的矩阵阵列形式。...printf(" 3、稀疏矩阵的乘法 \n"); printf(" 4、退出程序...两矩阵的行列数不一致\n"); break; case 3://乘法 CreatSMatrix(A); printf
1)点乘(即“ * ”) ---- 各个矩阵对应元素做乘法 若 w 为 m*1 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵。 ?...若 w 为 m*n 的矩阵,x 为 m*n 的矩阵,那么通过点乘结果就会得到一个 m*n 的矩阵。 ?...w的列数只能为 1 或 与x的列数相等(即n),w的行数与x的行数相等 才能进行乘法运算; 2)矩阵乘 ---- 按照矩阵乘法规则做运算 若 w 为 m*p 的矩阵,x 为 p*n 的矩阵,那么通过矩阵相乘结果就会得到一个... m*n 的矩阵。...只有 w 的列数 == x的行数 时,才能进行矩阵乘法运算; ?
【问题描述】 稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。实现一个能进行稀疏矩阵基本运算的运算器。...【基本要求】 以三元组顺序表表示稀疏矩阵,实现两个矩阵相加、相减的运算。稀疏矩阵的输入形式采用三元组表示,而运算结果的矩阵则以通常的阵列形式列出。 ?...稀疏矩阵加减法例子 【Talk is cheap, show you the code】 #include // By Titan 2020-03-30 using namespace
问题如下 矩阵成积.jpg 我采用的是3重循环,先计算的列的结果,应该还可以先计算行的结果,然后求出矩阵的乘法。没有过多的技巧,就是循环的使用。...相关的code package day20180728; import java.util.Scanner; class Matrix{ private int m,n;...Scanner,它生成的值是从指定的输入流扫描的 */ Scanner sn=new Scanner(System.in); int count=0;...int i=0; i<m; i++) for(int j=0; j<n; j++) { System.out.print("请输入矩阵中的数字...Matrix.chenfaMat(mx1.getArr(), mx2.getArr()); print(arry); } } 结果 矩阵的乘法
所以科学家们找到的一种既能够保存信息,又节省内存的方案:我们称之为“稀疏矩阵”。 背景 Pandas的DataFrame 已经算作机器学习中处理数据的标配了 ,那么稀疏矩阵的真正需求是什么?...什么是稀疏矩阵? 有两种常见的矩阵类型,密集和稀疏。主要区别在于稀疏指标有很多零值。密集的指标没有。这是一个具有 4 列和 4 行的稀疏矩阵的示例。 在上面的矩阵中,16 个中有 12 个是零。...这就引出了一个简单的问题: 我们可以在常规的机器学习任务中只存储非零值来压缩矩阵的大小吗? 简单的答案是:是的,可以! 我们可以轻松地将高维稀疏矩阵转换为压缩稀疏行矩阵(简称 CSR 矩阵)。...对于这种压缩我们的要求是压缩后的矩阵可以应用矩阵运算并以有效的方式访问指标,所以CSR并不是唯一方法,还有有更多的选项来存储稀疏矩阵。...所以可以理解为将这些数据转换为稀疏矩阵是值得的,因为能够节省很多的存储。 那么如何判断数据的稀疏程度呢?使用NumPy可以计算稀疏度。
所以科学家们找到的一种既能够保存信息,又节省内存的方案:我们称之为“稀疏矩阵”。 背景 Pandas的DataFrame 已经算作机器学习中处理数据的标配了 ,那么稀疏矩阵的真正需求是什么?...有两种常见的矩阵类型,密集和稀疏。主要区别在于稀疏指标有很多零值。密集的指标没有。这是一个具有 4 列和 4 行的稀疏矩阵的示例。 在上面的矩阵中,16 个中有 12 个是零。...这就引出了一个简单的问题: 我们可以在常规的机器学习任务中只存储非零值来压缩矩阵的大小吗? 简单的答案是:是的,可以! 我们可以轻松地将高维稀疏矩阵转换为压缩稀疏行矩阵(简称 CSR 矩阵)。...对于这种压缩我们的要求是压缩后的矩阵可以应用矩阵运算并以有效的方式访问指标,所以CSR并不是唯一方法,还有有更多的选项来存储稀疏矩阵。...这意味着,超过 90% 的数据点都用零填充。回到嘴上面的图,这就是上面我们看到为什么pandas占用内存多的原因。 我们为什么要关心稀疏矩阵? 好吧,使用稀疏矩阵有很多很好的理由。
说明: 稀疏矩阵是机器学习中经常遇到的一种矩阵形式,特别是当矩阵行列比较多的时候,本着“节约”原则,必须要对其进行压缩。本节即演示一种常用的压缩方法,并说明其他压缩方式。...2.6.2 稀疏矩阵压缩 我们已经可以用Numpy中的二维数组表示矩阵或者Numpy中的np.mat()函数创建矩阵对象,这样就能够很方便地完成有关矩阵的各种运算。...以矩阵乘法为例, 乘以任何数都是 , 加上任何数都等于该数,所以这些计算可以不进行。...对分块稀疏矩阵按行压缩 coo_matrix 坐标格式的稀疏矩阵 csc_matrix 压缩系数矩阵 csr_matrix 按行压缩 dia_matrix 压缩对角线为非零元素的稀疏矩阵 dok_matrix...字典格式的稀疏矩阵 lil_matrix 基于行用列表保存稀疏矩阵的非零元素 下面以csr_matrix为例进行演示。
文章目录 1、算法思想 2、代码实现 1、算法思想 最近老是碰到迭代问题,小数太多手算又算不过来,写个矩阵乘法辅助一下吧。 有两个矩阵A和B,计算矩阵A与B相乘之后的结果C。...A的列数必须等于B的行数 用矩阵A的第i行的值分别乘以矩阵B的第J列,然后将结果相加,就得到C[i][j]。...矩阵A的行等于C的行,矩阵B的列等于C的列,这两个数值用来控制循环的次数,但是每一步中需要把行和列中对应的乘机求和,所以再加一个内循环控制乘法求和就行。...下面我们进行矩阵乘法的测试 A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\\ 1 & 1& 1 \end{bmatrix} B= \...[lineLength][listLength];//相乘的结果矩阵 //乘法 for(int i=0;i<lineLength;i++){ for
简介 可以看到本文的特色图片是个极度稀疏连接的神经网络,它是由我们即将介绍论文中的算法SparseEA得到的。...论文提出了一种解决大规模稀疏问题的多目标算法,大规模稀疏存在于许多领域:机器学习、数据挖掘、神经网络。...作者主要讨论了四个具体的问题 ①特征选择 ②模式挖掘 ③关键节点检测 ④神经网络训练 上面四个问题虽然存在于不同领域,但是它们都属于多目标问题,它们的pareto面的解集都是稀疏的。...算法的贡献 ①设计了新的种群初始化策略(根据稀疏大规模特性,能够获得一个很好的前沿面) ②设计了新的基于pareto解集稀疏性的遗传算子 具体算法 算法框架 类似于NSGA2的框架 ?...因此,生成的子代不会有同样数量的0和1,并且可以保持子代的稀疏度。 ? 采用交叉变异后的结果: ? 可以看到,通过此策略,提高了稀疏度,被置为1的维度越来越少。
前言 这次,我们来聊一个轻松一点的话题,那就是给你一个矩阵A和一个矩阵B,使用矩阵乘法获得目标矩阵C,相信大家都不难写出下面的代码: #define A( i, j ) a[ (i)*lda + (j).../how-to-optimize-gemm这个工程,给大家介绍一下矩阵乘法有哪些可以优化的方法。...因此,为了解决上一问题,gemm论文提出了矩阵分块的做法,直击核心,这篇论文针对矩阵乘法主要提出了下面6种不同的分块计算方法,如下图所示: ?...在Figure4中透漏的第二个非常重要的点就是数据重排,也即数据Pack,之前我已经讲到2次这个技巧了,在这个矩阵乘法优化中同样适用。...因为我们分块后的AB仍然是内存不连续的,为了提高内存的连续性,在做矩阵乘法之前先对A,B做了数据重排,将第二行要操作的数放在第一行的末尾,这样Neon中的数据预取指令将会生效,极大提高数据存取效率。
乘数矩阵:也可以叫矩阵的乘数 就是说这个乘数是表示缩放这个矩阵 Xn[] /** * 矩阵乘数的函数 * * @param args * 参数a是个浮点型...; for (int i = 0; i < hang; i++) { result[i] = a[i] * b; } return result; } 行向量乘以列向量: 他们的结果作为向量乘法结果矩阵的某一个元素...: /** * 矩阵相乘的函数 * * @param args * 参数a,b是两个浮点型(double)的二维数组 * @return 返回值是一个浮点型二维数组...k++) { sum += a[i][k] * b[k][j]; } result[i][j] = sum; } } return result; } 二维矩阵和一维矩阵的相乘...-------------------------------- 23.0 16.010.0 矩阵相乘有个麻烦的事就是可能会遇到参数类型的影响,需要重载多次,各位还是自己写把,我这里把参数类型都写为
(1)算术乘法,整数、实数、复数、高精度实数之间的乘法。 ? (2)列表、元组、字符串这几种类型的对象与整数之间的乘法,表示对列表、元组或字符串进行重复,返回新列表、元组、字符串。 ?...需要特别注意的是,列表、元组、字符串与整数相乘,是对其中的元素的引用进行复用,如果元组或列表中的元素是列表、字典、集合这样的可变对象,得到的新对象与原对象之间会互相干扰。 ? ? ?...数组与标量相乘,等价于乘法运算符或numpy.multiply()函数: ? 如果两个数组是长度相同的一维数组,计算结果为两个向量的内积: ?...如果两个数组是形状分别为(m,k)和(k,n)的二维数组,表示两个矩阵相乘,结果为(m,n)的二维数组,此时一般使用等价的矩阵乘法运算符@或者numpy的函数matmul(): ?...在这种情况下,第一个数组的最后一个维度和第二个数组的倒数第二个维度将会消失,如下图所示,划红线的维度消失: ? 6)numpy矩阵与矩阵相乘时,运算符*和@功能相同,都表示线性代数里的矩阵乘法。
作为一只数学基础一般般的程序猿,有时候连怎么求逆矩阵都不记得,之前在wikiHow上看了一篇不错的讲解如何求3×3矩阵的逆矩阵的文章,特转载过来供大家查询以及自己备忘。...行列式的值通常显示为逆矩阵的分母值,如果行列式的值为零,说明矩阵不可逆。 什么?行列式怎么算也不记得了?我特意翻出了当年的数学课件。 好的,下面是第二步求出转置矩阵。...矩阵的转置体现在沿对角线作镜面反转,也就是将元素 (i,j) 与元素 (j,i) 互换。 第三步,求出每个2X2小矩阵的行列式的值。...第五步,由前面所求出的伴随矩阵除以第一步求出的行列式的值,从而得到逆矩阵。 注意,这个方法也可以应用于含变量或未知量的矩阵中,比如代数矩阵 M 和它的逆矩阵 M^-1 。...I 是单位阵,其对角线上的元素都为1,其余元素全为0。否则,你可能在某一步出了错。
论文地址:https://arxiv.org/abs/1710.10903 代码地址: https://github.com/Diego999/pyGAT 之前非稀疏矩阵版的解读:https://www.cnblogs.com.../xiximayou/p/13622283.html 我们知道图的邻接矩阵可能是稀疏的,将整个图加载到内存中是十分耗费资源的,因此对邻接矩阵进行存储和计算是很有必要的。...我们已经讲解了图注意力网络的非稀疏矩阵版本,再来弄清其稀疏矩阵版本就轻松了,接下来我们将来看不同之处。...adj.todense() adj = adj[np.newaxis] biases = process.adj_to_bias(adj, [nb_nodes], nhood=1) 如果是稀疏格式的...activation else: ret = ret + seq return activation(ret) # activation 相应的位置都要使用稀疏的方式
在推荐系统中,我们通常使用非常稀疏的矩阵,因为项目总体非常大,而单个用户通常与项目总体的一个非常小的子集进行交互。...这意味着当我们在一个矩阵中表示用户(行)和行为(列)时,结果是一个由许多零值组成的极其稀疏的矩阵。 ? 在真实的场景中,我们如何最好地表示这样一个稀疏的用户-项目交互矩阵?...SciPy的稀疏模块介绍 在Python中,稀疏数据结构在scipy中得到了有效的实现。稀疏模块,其中大部分是基于Numpy数组。...压缩稀疏行(CSR) 尽管在SciPy中有很多类型的稀疏矩阵,比如键的字典(DOK)和列表的列表(LIL),但我只讨论压缩稀疏行(CSR),因为它是最常用和最广为人知的格式。...向csr_matrix写入将是低效的,并且应该考虑其他类型的稀疏矩阵,比如在操作稀疏结构方面更有效的List of lists。
By 张旭 CaesarChang 合作 : root121toor@gmail.com 关注我 带你看更多好的技术知识和面试题 给你一个正方形矩阵 mat,请你返回矩阵对角线元素的和...请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。...题解: 只需要注意[i][i ] 然后另一个对角线上慢的[i][n-i-1] 求和 class Solution { public int diagonalSum(int[]
/** * 获取矩阵两串对角线数字之和的差值 * * 1 2 3 * 4 5 6 * 7 8 9 * * 1+5+9=15; * 3+
矩阵对角线元素的和) https://leetcode-cn.com/problems/matrix-diagonal-sum/ 题目描述 给你一个正方形矩阵 mat,请你返回矩阵对角线元素的和。...请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 ...示例 1: 输入:mat = [[1,2,3], [4,5,6], [7,8,9]] 输出:25 解释:对角线的和为:1 + 5 + 9 + 3 +
领取专属 10元无门槛券
手把手带您无忧上云