在业务增涨过程中,每个企业不知不觉积累积累了一些数据。无论数据是多是少,企业都希望让“数据说话”,通过对数据的采集、存储、分析、计算最终提供对业务有价值信息。
大数据平台的基本功能和数据的导入导出对SQL任务、NoSQL任务、机器学习、批处理任务的支持
10月18日,星环科技正式登陆科创板,成为国产大数据基础软件第一股。这一事件不仅代表了星环科技这家公司取得的阶段性成就,也标志着在当前数字化转型以及信创建设持续推进的背景下,国产大数据基础软件已驶入了发展的快车道。
现在各种新名词层出不穷,顶层的有数字城市、智慧地球、智慧城市、城市大脑;企业层面的有数字化转型、互联网经济,数字经济、数字平台; 平台层面的有物联网,云计算,大数据,5G,人工智能,机器智能,深度学习,知识图谱;技术层面的有数据仓库、数据集市、大数据平台、数据湖、数据中台、业务中台、技术中台等等,总之是你方唱罢他登场,各种概念满天飞…
金融科技&大数据产品推荐:BIGDAF——专业的Hadoop大数据安全防火墙
这个从上至下都在强调数字化转型的时代,越来越多公司重视数据,也越来越多的企业有数据建设的需求。
导读:本期“谁是数据英雄?传统企业大数据应用案例”给大家介绍《 秦山核电:为何启动国内首个核电大数据咨询项目? 》。据悉, 中核核电将在秦山站启动国内首个核电大数据咨询项目,旨在利用大数据检测分析设
国家 2035 远景规划提出要加快全面数字化转型的步伐,而“大数据平台”是数字化转型的基础技术之一。经过六年多的探索和实践,微众银行打造了一套在金融领域“自主可控”的开源大数据平台。对于任何企业来说,建立和维护一个大数据平台都不是一件容易的事情,而建设一个有特色的、完整易用的大数据平台,显然更是一件技术难度极高的事情。InfoQ 采访了微众银行 WeDataSphere 主创团队,希望他们的实践经验能给大家带来一些启发和思考。
Twitter是最早一批推进数字化运营的硅谷企业之一,其公司运营和产品迭代的很多功能是由其底层的大数据平台提供的。图7-2所示为Twitter大数据平台的基本示意图。
近期,由大数据产业生态联盟发起的“第十三期优秀大数据产品、解决方案和应用案例”测评结果发布,广域铭岛天满大数据平台和Geega天满大数据解决方案分别入围。
后web2.0时代,互联网、物联网每天都在生产大量数据,人们对于这些庞大数据资源的价值渴求,使得“大数据”的概念得以问世。如果说“数据”是支撑未来核心技术的基础“原材料”,那么“大数据”正在演变成一种战略资源,当“用户需求导向”成为企业共识,大数据的收集、挖掘和分析开始支撑企业的业务运转、营销策略乃至战略方向,数据成为企业愈加珍视的宝贵资产。 目前,建设有大数据平台的企业不在少数,对比传统数据库,大数据平台数据大量集中,且蕴含更高价值,其安全建设要求明显更高。然而,由于大数据平台使用非结构化数据库类型,以及
前言 人类每一次大的技术变革都是先在新兴产业生根发芽,再慢慢把触角伸到传统行业。在当前这股由IT(Information Technology)向DT(Data Technology)转变的技术浪潮中,互联网行业成为云计算、大数据等高新技术的试验田。经过近十年的发展,随着大数据技术的不断成熟以及互联网应用案例的普及,"数据驱动业务"的模式逐渐得到各行各业的广泛认同,“互联网+”战略的提出更是为大数据从互联网向其他行业的传播吹来一阵东风。腾讯作为互联网企业的代表,早在09年就开始探索建设大数据平台,经过批
笔者认为数据中台不应该是一个单纯的系统或者是一个软件工具,而应该是一套架构、一套数据流转模式。
本文首先介绍了大数据架构平台的组件架构,让读者了解大数据平台的全貌,然后分别介绍数据集成、存储与计算、分布式调度、查询分析等方面的观点,最后是专家眼里大数据平台架构的发展趋势。
*本文原创作者:mcvoodoo,本文属FreeBuf原创奖励计划,转载请联系help@freebuf.com 随着大数据的发展,从银行到P2P再到保险、证券等,越来越多的金融企业开始建设自己的大数据平台。传统上对于数据的管理,金融界是有经验的。 但在当前以Hadoop为基础的大数据平台,接触数据的人更多,数据使用的更频繁,数据的内外交互实时,数据种类更复杂,对安全带来了更严峻的挑战。 从金融业态上来说,包括征信、消费金融、P2P、众筹、互联网银行、互联网保险等金融企业,都会需要大数据平台来支撑业务需要。
问题导读 1.作为一个技术人员,你认为该如何搭建大数据平台? 2.构建大数据平台,你认为包括哪些步骤? 3.本文是如何构建大数据平台的? 亲身参与,作为主力完成了一个信息大数据分析平台。中间经历了很多问题,算是有些经验,因而作答。 整体而言,大数据平台从平台部署和数据分析过程可分为如下几步: 1、linux系统安装 一般使用开源版的Redhat系统–CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。例如,可以选择给HDFS的namenode
数据服务业务是未来趋势,荣之联刚刚发布的大数据平台DataZoo有啥亮点?
日志是大数据平台重要数据来源之一,应用程序日志一方面记录各种程序执行状况,一方面记录用户的操作轨迹。Flume 是日志收集常用的工具。
百科是这样定义的:精准医学(Precision Medicine)是以个体化医疗为基础、随着基因组测序技术快速进步以及生物信息与大数据科学的交叉应用而发展起来的新型医学概念与医疗模式。
从大数据开发的工作内容来看大数据开发主要负责大数据的大数据挖掘,数据清洗的发展,数据建模工作。
大数据是一系列技术的统称,经过多年的发展,大数据已经形成了从数据采集、整理、传输、存储、安全、分析、呈现和应用等一系列环节,这些环节涉及到诸多大数据工作岗位,这些工作岗位与物联网、云计算也都有密切的联系。
数据猿导读 恒丰银行探索采用大数据技术构建统一的企业级数据管理平台,重构数据仓库应用,减少数据重复加工与存储,促进信息管理应用的数据融合共享,提高数据处理总体效率,提升数据分析和应用创新能力,正逐步取得预期的成效。 本篇案例为数据猿推出的大型“金融大数据主题策划”活动(查看详情)第一部分的系列案例/征文;感谢 恒丰银行 的投递 作为整体活动的第二部分,2017年6月29日,由数据猿主办,互联网普惠金融研究院合办,中国信息通信研究院、大数据发展促进委员会、上海大数据联盟、首席数据官联盟协
在大数据产业近十年潮起潮落的变迁中,有一座穿越迷雾的灯塔,驱散了人们对数据应用的疑虑,照亮了数据价值回归的征程。
日前,中国信息通信研究院正式发布《城市大数据平台白皮书》,阐述了城市大数据的概念和内涵,分析了建设城市大数据平台对于破解智慧城市建设难题的意义,并介绍了我国城市大数据平台的发展现状。
1月,中国大陆境内所有通用顶级域(.com/.net/.org等)解析出现问题,所有相关域名均被指向一个位于美国的IP地址(65.49.2.178),导致数千万网民在数小时内无法访问网站。 4月,OpenSSL“心脏出血(Heartbleed)”重大安全漏洞被曝光,这一漏洞让黑客能够读取服务器系统的运行内存。有业内人士利用该漏洞在某知名电商网站上测试时,成功获得多位用户的账号及密码,并成功登陆网站。 9月,“iCloud艳照门”事件爆发,数百张好莱坞女演员不雅照在网上被曝光。原因是黑客通过攻击苹果iClou
声明:本文参考了淘宝/滴滴/美团发表的关于大数据平台建设的文章基础上予以整理。参考链接和作者在文末给出。
4月20日,京东大数据来到了北京大学光华管理学院,这次由京东大数据部平台运营管理负责人葛胜利老师给北大光华管理学院的师生们带来主题为“电子商务大数据平台技术架构与产品架构”的专题讲座,为大家讲述京东大数据平台如何在短短几年的时间里突破技术难关,实现产品创新,建设高效、安全、稳定的大数据平台,并以数据支撑京东的快速发展。 讲座中,葛胜利从京东大数据平台的“使命、架构、产品、运营”四大方面出发,全面的剖析了其中的奥秘。 在讲到平台使命时,胜利总提到,大数据平台在京东集团中的战略地位很重要,因为京东的公司运营是由
大数据作为当下最为热门的事件之一,其实已经不算是很新鲜的事情了。如果是三五年前在讨论大数据,那可能会给人一种很新鲜的感觉。大数据作为当下最为重要的一项战略资源,已经是越来越得到国家和企业的高度重视,我们从大数据被上升到国家战略层面就可窥见一二!
移动互联时代大浪淘沙,「数据」亦主沉浮。各家公司在追逐产品不断完善的同时,也都在累积各自的用户数据反哺产品。而随着数据的不断累积庞大也容易带来一些难以用老旧方法解决的问题,这些问题驱使着企业的大数据体系迭代演进,也再次把「大数据技术」推向高潮。
面对复杂的大数据安全环境,需要从四个层面综合考虑以建立全方位的大数据安全体系:边界安全、访问控制和授权、数据保护、审计和监控。如下图所示:
BDTC 2017中国大数据技术大会将于12月7日-9日在北京新云南皇冠假日酒店举行,大会为期三天。届时,近百位技术专家将为现场数千名的大数据行业精英、技术专家及意见领袖带来多场技术演讲,分享最新技术与实践的洞察与经验,探寻大数据发展的未来,领略数据与智能之美,欢迎大家前来参会。 大会官网:http://bdtc2017.bigdataforum.org.cn/ 日前我们采访了大会推荐系统论坛的讲师微博广告技术专家彭冬,他讲带来题为《微博商业化大数据平台从0到1架构演进及应用实践》的分享,以下为正文
我在一次社区活动中做过一次分享,演讲题目为《大数据平台架构技术选型与场景运用》。在演讲中,我主要分析了大数据平台架构的生态环境,并主要以数据源、数据采集、数据存储与数据处理四个方面展开分析与讲解,并结合具体的技术选型与需求场景,给出了我个人对大数据平台的理解。本文是演讲内容的第一部分。 大数据平台是一个整体的生态系统,内容涵盖非常丰富,涉及到大数据处理过程的诸多技术。在这些技术中,除了一些最基础的平台框架之外,针对不同的需求场景,也有不同的技术选择。这其中,显然有共性与差异性的特征。若从整个开发生命周期的角
9月9日,由腾讯安全联合北京城市大数据研究院有限公司、中安威士(北京)科技有限公司、闪捷信息科技有限公司、北京三未信安科技有限公司、杭州世平信息科技有限公司等生态合作伙伴,共同举办的《政务大数据平台数据安全体系建设指南》(以下简称《指南》)发布会在线上举办。
一般情况下,大数据平台指的是使用了Hadoop、Spark、Storm、Flink、Blink等这些分布式、实时或者离线计算框架,并在上面运行各种计算任务的平台。
5月21日~23日,由香港化学生物及环境工程学会(HKCBEES)-生物学和生物信息学会(BBS)主办的第十三届生物信息学和生物医学技术国际会议(ICBBT 2021)、第九届IEEE生物信息学与计算生物学国际会议(ICBCB 2021)、图形与图像处理国际前沿研讨会(FGIP 2021)在西安同期召开,深圳国家基因库(以下简称“国家基因库”)受邀作为协办单位参与三大会议,国家基因库生命大数据平台(CNGBdb)亮相ICBBT 2021主会场主题演讲,获得国内外医学与生物信息领域研究人员的广泛关注。
做大数据有几年了,这些年耳濡目染了一些大数据管理平台的使用,但是或多或少使用起来,都不怎么方便,所以决定自己来实现一个简单的大数据平台
引言 人工智能、大数据与云计算三者有着密不可分的联系。人工智能从1956年开始发展,在大数据技术出现之前已经发展了数十年,几起几落,但当遇到了大数据与分布式技术的发展,解决了计算力和训练数据量的问题,开始产生巨大的生产价值;同时,大数据技术通过将传统机器学习算法分布式实现,向人工智能领域延伸;此外,随着数据不断汇聚在一个平台,企业大数据基础平台服务各个部门以及分支机构的需求越来越迫切。通过容器技术,在容器云平台上构建大数据与人工智能基础公共能力,结合多租户技术赋能业务部门的方式将人工智能、大数据与云计算进行
大数据平台作为底层的基础数据平台,集群规模、计算存储性能将决定流、批的性能指标上限。所以需要考虑整个大数据平台的吞吐量(网络、磁盘IO)、响应速率、计算能力、高并发性、高可用、维护性方便等,以满足多业务场景下,不同应用需求的建设任务,比如多维分析、实时计算、即席查询和数据统计分析等应用功能。 本项目大数据平台在建设过程中,将满足如下性能指标: 批处理部分指标: 支持批处理集群批量总写入速度2GB/秒,批量读取速度300MB/秒; 平台支持并发执行300个查询和200个加载任务; 应用查询时间对于数据库的简单数据读取将不超过1~2秒,三个月统计计算查询时间将不超过15秒,复杂查询时间将不超过1分钟; 复杂批处理任务,ETL的处理时间将不超过2个小时; 实时流处理指标: 平台支持接收峰值为每秒100万条+的流数据; 平台能够在峰值条件下,完成2秒内的实时预警,2秒内完成针对当日数据的查询; 平台每日实时处理模块能够累积处理144亿笔(按4小时交易日保持峰值流速计)订单流数据; 平台支持至少50个并发访问/查询当日数据。 应用响应指标: 数仓应用项目离线报表30秒内完成数据响应查询; 实时大屏数据展示5秒内完成数据响应查询; 应用平台支持并发执行500个用户查询请求;
大部分电商大数据平台系统企业在实践项目的时候,并不会把大部分主力资源将品牌能力沉淀成自身的产品和平台,例如很多可以实现共用的大数据服务没有实现真正意义上的服务化、产品化,以致于很多产品总是在执行重复的动作。我们知道目前的大数据中台系统技术带来的不仅仅是数据量的火箭式增长,更重要的是利于大数据网站系统管理能力提升,所以传统的大数据平台建设已经无法满足用户需求。数据中台系统架构体量、产业规模以及云计算高速发展轻松降低基础设施成本,进一步创造企业盈利是大数据平台所关心的重点问题。通过本文我们来简单了解下:企业为什么要搭建大数据中台系统,什么叫大数据中台架构,数据中台系统架构基本构成和如何提升电商大数据平台功能管理。
大数据已不再是一个单纯的热门词汇了,随着技术的发展大数据已在企业、政府、金融、医疗、电信等领域得到了广泛的部署和应用,并通过持续不断的发展,大数据也已在各领域产生了明显的应用价值。 企业已开始热衷于利用大数据技术收集和存储海量数据,并对其进行分析。企业所收集的数据量也呈指数级增长,包括交易数据、位置数据、用户交互数据、物流数据、供应链数据、企业经营数据、硬件监控数据、应用日志数据等。由于这些海量数据中包含大量企业或个人的敏感信息,数据安全和隐私保护的问题逐渐突显出来。而这些问题由于大数据的三大主要特性而
摘 要:通过对数据处理阶段性发展的解析,分析大数据、人工智能技术的发展趋势。结合实际生产需求,验证了基于容器云架构的新一代大数据与人工智能平台在数据分析、处理、挖掘等方面的强大优势。
本文隶属于专栏《100个问题搞定大数据理论体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!
一般我们在找工作时,会看到大数据开发、大数据分析、大数据运维这三个岗位,有时候我们对这三个岗位具体是做什么,还有些懵逼。作为一名数据库 SQL 优化器工程师,结合我过往的大数据经验,今天帮大家分析这三个岗位,具体哪个好,要看你从什么角度去看他。
4月21日~23日,由IEEE, 浙江大学主办,深圳国家基因库(CNGB) 等单位协办的第11届生物信息学与计算生物学国际会议(ICBCB2023)在杭州顺利举行。国家基因库生命大数据平台(CNGBdb)亮相ICBCB2023大会特邀报告,获得生物信息与计算生物学领域研究人员的广泛关注。
Pipeline大数据架构,面向大数据仓库和大数据处理平台。是基于lambda的大数据架构的变种,增加了企业级服务,而并非只是大数据组件的对切,是一种更落地的方案。 如同骨架之间使用软骨连接起来一样,是一个完整可执行的架构设计。形成Pipeline架构。
数据猿导读 随着数据量的不断增大、接入的系统越来越多,系统加工效率逐步降低,满足内部数据分析和监管机构的监管数据不断增加的需求,农业银行在2013年开始建设完全自主可控的大数据平台。 本篇案例为数据猿
导读:本期“谁是数据英雄?传统企业大数据应用案例”给大家介绍《 兴业银行:信用卡背后的数据生命线》。兴业银行作为首批试水大数据的商业银行之一,借助大数据的关键技术和核心优势,通过对消费者行为的分析和
自我介绍下,我是微众银行大数据平台的工程师:周可,今天给大家分享一下 Nebula Graph 在微众银行 WeDataSphere 的实践情况。
大数据存储不是一类单独的产品,它有很多实现方式。EMC Isilon存储事业部总经理杨兰江概括说,大数据存储应该具有以下一些特性:海量数据存储能力,可轻松管理PB级乃至数十PB的存储容量;具有全局命名空间,所有应用可以看到统一的文件系统视图;支持标准接口,应用无需修改可直接运行,并提供API接口进行面向对象的管理;读写性能优异,聚合带宽高达数GB乃至数十GB;易于管理维护,无需中断业务即可轻松实现动态扩展;基于开放架构,可以运行于任何开放架构的硬件之上;具有多级数据冗余,支持硬件与软件冗余保护,数据具有高可靠性;采用多级存储备份,可灵活支持SSD、SAS、SATA和磁带库的统一管理。 通过与中国用户的接触,杨兰江认为,当前中国用户最迫切需要了解的是大数据存储有哪些分类,而在大数据应用方面面临的最大障碍就是如何在众多平台中找到适合自己的解决方案。 EMC针对不同的应用需求可以提供不同的解决方案:对于能源、媒体、生命科学、医疗影像、GIS、视频监控、HPC应用、某些归档应用等,EMC会首推以Isilon存储为核心的大数据存储解决方案;对于虚拟化以及具有很多小文件的应用,EMC将首推以VNX、XtremIO为核心的大数据存储解决方案;对于大数据分析一类的应用需求,EMC会综合考虑客户的具体需求,推荐Pivotal、Isilon等一体化的解决方案。在此,具体介绍一下EMC用于大数据的横向扩展NAS解决方案——EMC Isilon,其设计目标是简化对大数据存储基础架构的管理,为大数据提供灵活的可扩展平台,进一步提高大数据存储的效率,降低成本。 EMC Isilon存储解决方案主要包括三部分:EMC Isilon平台节点和加速器,可从单个文件系统进行大数据存储,从而服务于 I/O 密集型应用程序、存储和近线归档;EMC Isilon基础架构软件是一个强大的工具,可帮助用户在大数据环境中保护数据、控制成本并优化存储资源和系统性能;EMC Isilon OneFS操作系统可在集群中跨节点智能地整合文件系统、卷管理器和数据保护功能。 杨兰江表示,企业用户选择EMC Isilon的理由可以归纳为以下几点。第一,简化管理,增强易用性。与传统NAS相比,无论未来存储容量、性能增加到何种程度,EMC Isilon的安装、管理和扩展都会保持其简单性。第二,强大的可扩展性。EMC Isilon可以满足非结构化数据的存储和分析需求,单个文件系统和卷中每个集群的容量为18TB~15PB。第三,更高的处理效率,更低的成本。EMC Isilon在单个共享存储池中的利用率超过80%,而EMC Isilon SmartPools软件可进一步优化资源,提供自动存储分层,保证存储的高性能、经济性。第四,灵活的互操作性。EMC Isilon支持众多行业标准,简化工作流。它还提供了API可以向客户和ISV提供OneFS控制接口,提供Isilon集群的自动化、协调和资源调配能力。 EMC Isilon大数据存储解决方案已经在医疗、制造、高校和科研机构中有了许多成功应用。
领取专属 10元无门槛券
手把手带您无忧上云